高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于注意力机制ConvLSTM的UAV节能预部署策略

唐伦 蒲昊 汪智平 吴壮 陈前斌

唐伦, 蒲昊, 汪智平, 吴壮, 陈前斌. 基于注意力机制ConvLSTM的UAV节能预部署策略[J]. 电子与信息学报, 2022, 44(3): 960-968. doi: 10.11999/JEIT211368
引用本文: 唐伦, 蒲昊, 汪智平, 吴壮, 陈前斌. 基于注意力机制ConvLSTM的UAV节能预部署策略[J]. 电子与信息学报, 2022, 44(3): 960-968. doi: 10.11999/JEIT211368
TANG Lun, PU Hao, WANG Zhiping, WU Zhuang, CHEN Qianbin. Energy-efficient Predictive Deployment Strategy of UAVs Based on ConvLSTM with Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(3): 960-968. doi: 10.11999/JEIT211368
Citation: TANG Lun, PU Hao, WANG Zhiping, WU Zhuang, CHEN Qianbin. Energy-efficient Predictive Deployment Strategy of UAVs Based on ConvLSTM with Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(3): 960-968. doi: 10.11999/JEIT211368

基于注意力机制ConvLSTM的UAV节能预部署策略

doi: 10.11999/JEIT211368
基金项目: 国家自然科学基金(62071078),重庆市教委科学技术研究项目(KJZD-M201800601),川渝联合实施重点研发项目(2021YFQ0053)
详细信息
    作者简介:

    唐伦:男,1973年生,教授,博士,主要研究方向为下一代无线通信网络、异构蜂窝网络、软件定义网络等

    蒲昊:男,1997年生,硕士生,研究方向为边缘智能计算资源分配与协同机理、无人机等

    汪智平:男,1998年生,硕士生,研究方向为边缘智能计算协同机理、联邦学习通信优化等

    吴壮:男,1996年生,硕士生,研究方向为边缘智能计算资源分配、无人机动态规划等

    陈前斌:男,1967年生,教授,博士生导师,主要研究方向为个人通信、多媒体信息处理与传输、异构蜂窝网络等

    通讯作者:

    蒲昊 839531897@qq.com

  • 中图分类号: TN929.5

Energy-efficient Predictive Deployment Strategy of UAVs Based on ConvLSTM with Attention Mechanism

Funds: The National Natural Science Foundation of China (62071078), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601), Sichuan and Chongqing Key R&D Projects (2021YFQ0053)
  • 摘要: 无人机(UAV)可以作为空中基站而凭借其移动性灵活地实现热点区域的覆盖。如何预测流量的分布而优化UAV部署是运营商面临的挑战。针对此问题,该文提出一种基于注意力机制卷积长短期记忆网络(A-ConvLSTM)的UAV节能预部署策略:提出一种融合注意力机制的卷积长短期记忆深度时空网络模型A-ConvLSTM,用于预测用户与流量的时空分布;基于预测结果优化UAV的覆盖和位置,在满足用户接入速率要求的前提下,以最小化UAV系统发射功率为目标建立优化模型,将目标问题解耦成两个子问题并提出一种节能部署算法迭代求解。实验结果表明A-ConvLSTM性能高于各基线模型;节能部署算法能够有效降低UAV系统发射功耗,并能以更少数量的UAV实现整体区域覆盖。
  • 图  1  系统场景

    图  2  A-ConvLSTM网络结构

    图  3  ConvLSTM单元结构

    图  4  注意力机制

    图  5  模型性能指标对比

    图  6  模型训练轮次与Loss变化

    图  7  UAV系统总功率对比

    图  8  超负载UAV数量对比

    图  9  EED算法迭代情况

    表  1  EED算法

     输入:区域A各个AoI的预测流量$ {\hat U_i} $及用户数$ {\hat M_i} $
     输出:每个UAV的关联AoI${{\boldsymbol{\mu}} }$及位置$ (x_j^ * ,y_j^ * ,{h_j}) $
     (1) 固定UAV的数量,迭代次数k=1,随机选取每个UAV的初始
       位置$ {({x_j},{y_j},{h_j})_1} $,
     (2) while 当P1且P2的解都严格单调递减时:
     (3)    基于$ {({x_j},{y_j},{h_j})_k} $,利用拉格朗日对偶和次梯度法求
          解P1,得到当前每个UAV的最佳关联AoI${ {{\boldsymbol{\mu}} }_k}$
     (4)    基于${ {{\boldsymbol{\mu}} }_k}$,根据式(25)得到每个无人机的最佳位置
          $ {(x_j^ * ,y_j^ * ,{h_j})_{k + 1}} $
     (5)    k=k+1
     (6) end while
     (7) for $ j \in {\mathcal{J}} $ do
     (8)  if 约束条件式(16b)或式(16c)不成立
     (9)    增加UAV数量J
     (10)    跳转至步骤(1)
     (11) end for
    下载: 导出CSV
  • [1] SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287
    [2] MOZAFFARI M, SAAD W, BENNIS M, et al. Wireless communication using Unmanned Aerial Vehicles (UAVs): Optimal transport theory for hover time optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(12): 8052–8066. doi: 10.1109/TWC.2017.2756644
    [3] ZENG Yong and ZHANG Rui. Energy-efficient UAV communication with trajectory optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3747–3760. doi: 10.1109/TWC.2017.2688328
    [4] LIU C H, CHEN Zheyu, TANG Jian, et al. Energy-Efficient UAV control for effective and fair communication coverage: A deep reinforcement learning approach[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 2059–2070. doi: 10.1109/JSAC.2018.2864373
    [5] WANG Zhe, DUAN Lingjie, and ZHANG Rui. Traffic-aware adaptive deployment for UAV-aided communication networks[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 1–6.
    [6] 张凤荔, 赵永亮, 王丹, 等. 基于流量特征的网络流量预测研究[J]. 计算机科学, 2014, 41(4): 86–89,98. doi: 10.3969/j.issn.1002-137X.2014.04.019

    ZHANG Fengli, ZHAO Yongliang, WANG Dan, et al. Prediction of network traffic based on traffic characteristics[J]. Computer Science, 2014, 41(4): 86–89,98. doi: 10.3969/j.issn.1002-137X.2014.04.019
    [7] RAHMAN M S. Characterizing and predicting individual traffic usage of mobile application in cellular network[J]. Computing Reviews, 2019, 60(4): 181.
    [8] SAPANKEVYCH N I and SANKAR R. Time series prediction using support vector machines: A survey[J]. IEEE Computational Intelligence Magazine, 2009, 4(2): 24–38. doi: 10.1109/MCI.2009.932254
    [9] HONG W C, DONG Yucheng, ZHENG Feifeng, et al. Hybrid evolutionary algorithms in a SVR traffic flow forecasting model[J]. Applied Mathematics and Computation, 2011, 217(15): 6733–6747. doi: 10.1016/j.amc.2011.01.073
    [10] XU Yue, YIN Feng, XU Wenjun, et al. Wireless traffic prediction with scalable Gaussian process: Framework, algorithms, and verification[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1291–1306. doi: 10.1109/JSAC.2019.2904330
    [11] 陈晓天, 刘静娴. 改进的基于小波变换和FARIMA模型的网络流量预测算法[J]. 通信学报, 2011, 32(4): 153–157,165. doi: 10.3969/j.issn.1000-436X.2011.04.019

    CHEN Xiaotian and LIU Jingxian. Network traffic prediction based on wavelet transformation and FARIMA[J]. Journal on Communications, 2011, 32(4): 153–157,165. doi: 10.3969/j.issn.1000-436X.2011.04.019
    [12] FAN Jianyong, MU Dejun, and LIU Yang. Research on network traffic prediction model based on neural network[C]. 2019 2nd International Conference on Information Systems and Computer Aided Education, Dalian, China, 2019: 554–557.
    [13] NIE Laisen, JIANG Dingde, YU Shui, et al. Network traffic prediction based on deep belief network in wireless mesh backbone networks[C]. 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–5.
    [14] CHEN Xiaming, JIN Yaohui, QIANG Siwei, et al. Analyzing and modeling spatio-temporal dependence of cellular traffic at city scale[C]. 2015 IEEE International Conference on Communications, London, UK, 2015: 3585–3591.
    [15] SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 802–810.
    [16] BAHDANAU D, CHO K, and BENGIO Y. Neural machine translation by jointly learning to align and translate[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1–15.
    [17] 孙小玲, 李端. 整数规划[M]. 北京: 科学出版社, 2010: 122–125.

    SUN Xiaoling and LI Duan. Integer Programming[M]. Beijing: Science Press, 2010: 122–125.
    [18] ZHANG Qianqian, SAAD W, BENNIS M, et al. Predictive deployment of UAV base stations in wireless networks: Machine learning meets contract theory[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 637–652. doi: 10.1109/TWC.2020.3027624
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  760
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-02-28
  • 录用日期:  2022-02-28
  • 网络出版日期:  2022-03-02
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回