高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机几何理论的多天线密集异构网络性能分析与优化

赵东来 王钢 刘浩洋 贾少波

赵东来, 王钢, 刘浩洋, 贾少波. 基于随机几何理论的多天线密集异构网络性能分析与优化[J]. 电子与信息学报, 2022, 44(9): 2986-2993. doi: 10.11999/JEIT211365
引用本文: 赵东来, 王钢, 刘浩洋, 贾少波. 基于随机几何理论的多天线密集异构网络性能分析与优化[J]. 电子与信息学报, 2022, 44(9): 2986-2993. doi: 10.11999/JEIT211365
ZHAO Donglai, WANG Gang, LIU Haoyang, JIA Shaobo. Performance Analysis and Optimization of Multi-antenna Dense Heterogeneous Network Based on Stochastic Geometry Theory[J]. Journal of Electronics & Information Technology, 2022, 44(9): 2986-2993. doi: 10.11999/JEIT211365
Citation: ZHAO Donglai, WANG Gang, LIU Haoyang, JIA Shaobo. Performance Analysis and Optimization of Multi-antenna Dense Heterogeneous Network Based on Stochastic Geometry Theory[J]. Journal of Electronics & Information Technology, 2022, 44(9): 2986-2993. doi: 10.11999/JEIT211365

基于随机几何理论的多天线密集异构网络性能分析与优化

doi: 10.11999/JEIT211365
基金项目: 国家自然科学基金(62071146, 61671184)
详细信息
    作者简介:

    赵东来:男,博士生,研究方向为超密集组网技术

    王钢:男,博士,教授,研究方向为非正交多址技术、多天线技术、无线携能通信网络

    刘浩洋:男,博士生,研究方向为异构边缘计算与缓存

    贾少波:男,博士,讲师,研究方向为异构网络和物理层安全

    通讯作者:

    王钢 gwang51@hit.edu.cn

  • 中图分类号: TN929.5

Performance Analysis and Optimization of Multi-antenna Dense Heterogeneous Network Based on Stochastic Geometry Theory

Funds: The National Natural Science Foundation of China (62071146, 61671184)
  • 摘要: 无线网络的异构化、密集化部署极大地提高了系统容量,可满足用户日益增长的数据流量需求,但是复杂的网络结构、近乎随机的基站分布不利于系统的性能评估和参数设计。针对这一问题,该文提出一种适用于多天线密集异构网络的性能分析框架。首先,利用随机几何模型推导了覆盖率的闭合表达式并给出了优化方案。为了直观地观察关键系统参数对覆盖率的影响,还给出了一种渐近表达式。其次,推导了区域频谱效率(ASE)的积分表达式,为了减小计算复杂度,给出了一种ASE的上界。最后,还提出了一种有效的算法来设计最优的基站(BSs)部署密度,以在满足覆盖率需求的前提下最大化ASE。仿真结果验证了理论分析的正确性和所提优化算法的有效性。该文的研究成果不但可以为复杂网络的性能分析提供理论依据,还可为系统的优化与设计提供可行性方案。
  • 图  1  密集异构网络系统模型

    图  2  覆盖率对比分析

    图  3  基站密度对覆盖率的影响

    图  4  ASE精确值与上界

    图  5  最优激活态基站密度

    表  1  最优基站部署方案求解算法(算法1)

     输入:覆盖率需求$ \eta $
     输出:最优解$ {\lambda ^ * } $
     (1) if $ \eta \mathop {\max }\limits_{k \in \mathcal{K}} p_k^{\rm{c}} \left( \beta \right)$ then
     (2)   没有可行解
     (3) else
     (4)   $ {\lambda ^ * } \leftarrow {\lambda ^{\max }} $
     (5)   while ${\boldsymbol{c}}{\lambda ^ * } < 0$且$\mathcal{K} \ne \varnothing$ do
     (6)     $ i = \arg \mathop {\min }\limits_{i \in \mathcal{K}} \dfrac{{{c_i}}}{{{b_i}}} $
     (7)     $ \lambda _i^ * \leftarrow 0 $
     (8)     if ${\boldsymbol{c}}{\lambda ^ * } > 0$ then
     (9)       $\lambda _i^ * \leftarrow - \dfrac{ {{\boldsymbol{c}}{\lambda ^ * } } }{ { {c_i} } }$
     (10)     end if
     (11)     $ \mathcal{K}\leftarrow \mathcal{K}/\left\{i\right\} $
     (12)   end while
     (13) end if
    下载: 导出CSV
  • [1] LIU Guangyi, HUANG Yuhong, LI Na, et al. Vision, requirements and network architecture of 6G mobile network beyond 2030[J]. China Communications, 2020, 17(9): 92–104. doi: 10.23919/JCC.2020.09.008
    [2] CHEN Shanzhi, SUN Shaohui, and KANG Shaoli. System integration of terrestrial mobile communication and satellite communication—the trends, challenges and key technologies in B5G and 6G[J]. China Communications, 2020, 17(12): 156–171. doi: 10.23919/JCC.2020.12.011
    [3] ANDREEV S, PETROV V, DOHLER M, et al. Future of ultra-dense networks beyond 5G: Harnessing heterogeneous moving cells[J]. IEEE Communications Magazine, 2019, 57(6): 86–92. doi: 10.1109/MCOM.2019.1800056
    [4] TENG Yinglei, LIU Mengting, YU F R, et al. Resource allocation for ultra-dense networks: A survey, some research issues and challenges[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2134–2168. doi: 10.1109/COMST.2018.2867268
    [5] 赵东来, 王钢, 郑黎明, 等. 超密集网络中非合作博弈的功率分配算法[J]. 哈尔滨工业大学学报, 2020, 52(5): 30–34. doi: 10.11918/201910027

    ZHAO Donglai, WANG Gang, ZHENG Liming, et al. Optimal power allocation strategy in ultra-dense networks with non-cooperative game[J]. Journal of Harbin Institute of Technology, 2020, 52(5): 30–34. doi: 10.11918/201910027
    [6] XIAO Jia, YANG Chungang, ANPALAGAN A, et al. Joint interference management in ultra-dense small-cell networks: A multi-domain coordination perspective[J]. IEEE Transactions on Communications, 2018, 66(11): 5470–5481. doi: 10.1109/TCOMM.2018.2851215
    [7] ANDREWS J G, BACCELLI F, and GANTI R K. A tractable approach to coverage and rate in cellular networks[J]. IEEE Transactions on Communications, 2011, 59(11): 3122–3134. doi: 10.1109/TCOMM.2011.100411.100541
    [8] DHILLON H S, GANTI R K, BACCELLI F, et al. Modeling and analysis of K-tier downlink heterogeneous cellular networks[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(3): 550–560. doi: 10.1109/JSAC.2012.120405
    [9] JO H S, SANG Y J, XIA Ping, et al. Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[J]. IEEE Transactions on Wireless Communications, 2012, 11(10): 3484–3495. doi: 10.1109/TWC.2012.081612.111361
    [10] ZHAO Donglai, WANG Gang, JIA Shaobo, et al. Performance analysis of K-tier ultra-dense networks over Nakagami-m fading channels[C]. 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 2021: 1–6.
    [11] KHAN K S and JAMALIPOUR A. Coverage analysis for multi-request association model (MRAM) in a caching ultra-dense network[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3882–3889. doi: 10.1109/TVT.2019.2896604
    [12] FILO M, FOH C H, VAHID S, et al. Performance analysis of ultra-dense networks with regularly deployed base stations[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3530–3545. doi: 10.1109/TWC.2020.2974729
    [13] 贾向东, 路艺, 纪澎善, 等. 大规模无人机协助的多层异构网络设计及性能研究[J]. 电子与信息学报, 2021, 43(9): 2632–2639. doi: 10.11999/JEIT200443

    JIA Xiangdong, LU Yi, JI Pengshan, et al. Design of large-scale UAV-assisted multi-tier heterogeneous networks and performance research[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2632–2639. doi: 10.11999/JEIT200443
    [14] ZHANG Ruoyu, SHIM B, and ZHAO Honglin. Downlink compressive channel estimation with phase noise in massive MIMO systems[J]. IEEE Transactions on Communications, 2020, 68(9): 5534–5548. doi: 10.1109/TCOMM.2020.2998141
    [15] LI Chang, ZHANG Jun, and LETAIEF K B. Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations[J]. IEEE Transactions on Wireless Communications, 2014, 13(5): 2505–2517. doi: 10.1109/TWC.2014.031714.131020
    [16] DI RENZO M, GUIDOTTI A, and CORAZZA G E. Average rate of downlink heterogeneous cellular networks over generalized fading channels: A stochastic geometry approach[J]. IEEE Transactions on Communications, 2013, 61(7): 3050–3071. doi: 10.1109/TCOMM.2013.050813.120883
    [17] WANG Rui, ZHANG Jun, SONG S H, et al. Average throughput analysis of downlink cellular networks with multi-antenna base stations[C]. The IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, USA, 2014: 1892–1896.
    [18] HEATH JR R W, WU Tao, KWON Y H, et al. Multiuser MIMO in distributed antenna systems with out-of-cell interference[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4885–4899. doi: 10.1109/TSP.2011.2161985
    [19] HE Anqi, WANG Lifeng, CHEN Yue, et al. Massive MIMO in K-tier heterogeneous cellular networks: Coverage and rate[C]. 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, USA, 2015: 1–6.
    [20] BACCELLI F and BLASZCZYSZYN B. Stochastic Geometry and Wireless Networks[M]. Hanover: Now Publishers, 2009: 6–14.
    [21] GRADSHTEYN I S and RYZHIK I M. Table of Integrals, Series, and Products[M]. 7th ed. San Diego: Academic Press, 2007: 1008–1009.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  754
  • HTML全文浏览量:  353
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-04-03
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2022-09-19

目录

    /

    返回文章
    返回