高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MIMO的多无人机辅助移动边缘计算系统时延优化设计

邹昳琨 王钢 王金龙 刘浩洋

邹昳琨, 王钢, 王金龙, 刘浩洋. 基于MIMO的多无人机辅助移动边缘计算系统时延优化设计[J]. 电子与信息学报, 2022, 44(3): 881-889. doi: 10.11999/JEIT211360
引用本文: 邹昳琨, 王钢, 王金龙, 刘浩洋. 基于MIMO的多无人机辅助移动边缘计算系统时延优化设计[J]. 电子与信息学报, 2022, 44(3): 881-889. doi: 10.11999/JEIT211360
ZOU Yikun, WANG Gang, WANG Jinlong, LIU Haoyang. Delay Optimization Design for Multi-UAVs Mobile Edge Computing Systems Based on MIMO[J]. Journal of Electronics & Information Technology, 2022, 44(3): 881-889. doi: 10.11999/JEIT211360
Citation: ZOU Yikun, WANG Gang, WANG Jinlong, LIU Haoyang. Delay Optimization Design for Multi-UAVs Mobile Edge Computing Systems Based on MIMO[J]. Journal of Electronics & Information Technology, 2022, 44(3): 881-889. doi: 10.11999/JEIT211360

基于MIMO的多无人机辅助移动边缘计算系统时延优化设计

doi: 10.11999/JEIT211360
基金项目: 国家自然科学基金(62071146, 62071147)
详细信息
    作者简介:

    邹昳琨:男,1992年生,博士生,研究方向为无人机通信、移动边缘计算

    王钢:男,1962年生,教授,博士生导师,研究方向为数据通信、物理层网络编码、通信网理论与技术

    王金龙:男,1986年生,讲师,研究方向为无人机通信、无线携能技术、海洋通信等

    刘浩洋:男,1993年生,博士生,研究方向为异构边缘计算与缓存

    通讯作者:

    王钢 gwang51@hit.edu.cn

  • 中图分类号: TN929.5

Delay Optimization Design for Multi-UAVs Mobile Edge Computing Systems Based on MIMO

Funds: The National Natural Science Foundation of China (62071146, 62071147)
  • 摘要: 物联网数据的快速增长和物联网设备的计算限制催生了移动边缘计算(Mobile Edge Computing, MEC)解决方案。其中,无人机群的高机动性、易部署以及成本低的特点和多输入多输出(Multiple Input Multiple Output, MIMO)技术能够增强边缘计算网络的传输容量,缩短边缘计算网络的传输时延。该文在基于多无人机的多用户MIMO-MEC系统中通过联合优化无人机轨迹、地面用户卸载比、辅助无人机卸载比和辅助无人机数据分发比最小化整个周期的系统最大总时延。采用了连续凸优化技术和块坐标下降方法来解决其中的非凸问题。仿真结果讨论了影响系统时延的因素,并验证了算法的有效性及收敛性。
  • 图  1  系统模型

    图  2  5种方案的辅助无人机轨迹对比图

    图  3  不同方法下临近无人机计算频率与系统总时延关系的对比图(周期T=30s,N=5)

    图  4  方案2和方案4的收敛对比图

    表  1  针对问题式(25)的优化算法

     算法1 问题式(27)的块坐标下降算法
     1:初始化变量集合$\{ {{\boldsymbol{L}}^0},{\boldsymbol{M}}_1^0,{{\boldsymbol{b}}^0},{{\boldsymbol{Q}}^0}\} $. 使得l= 0.
     2:repeat
     3:给定$\{ {\boldsymbol{M}}_1^l,{{\boldsymbol{b}}^l},{{\boldsymbol{Q}}^l}\} $求解问题式(26),求解最优情况$\{ {{\boldsymbol{L}}^{l + 1}}\} $
     4:给定$\{ {{\boldsymbol{L}}^{l + 1}},{{\boldsymbol{b}}^l},{{\boldsymbol{Q}}^l}\} $求解问题式(27),求解最优情况$\{ {\boldsymbol{M}}_1^{l + 1}\} $
     5:给定$\{ {{\boldsymbol{L}}^{l + 1}},{\boldsymbol{M}}_1^{l + 1},{{\boldsymbol{Q}}^l}\} $求解问题式(28),求解最优情况
        $\{ {{\boldsymbol{b}}^{l + 1}}\} $
     6:给定$\{ {{\boldsymbol{L}}^{l + 1}},{\boldsymbol{M}}_1^{l + 1},{{\boldsymbol{b}}^{l + 1}}\} $求解问题式(34),求解最优情况
        $\{ {{\boldsymbol{Q}}^{l + 1}}\} $
     7:更新l= l + 1.
     8:until目标函数的增益小于一个阈值$ \varepsilon > 0 $.
    下载: 导出CSV

    表  2  部分仿真参数列表

    参数参数数值参数参数数值
    $ {B_{{\text{user}},k}} $$ 1\;{\text{MHz}} $$ {B_{{\text{UAV,}}w}} $$ 1\;{\text{MHz}} $
    ${{{D}}_k}[n]$$3 \times {10^5}\;{\text{bit}}$${l_k}[n]$$0.5\forall k,n$
    ${m_1}[n]$$0.5\forall n$${b_j}[n]$$0.25\forall j,n$
    ${c_k}$$ {10^3} \; {\text{cycle/bit}} $${c_{{\text{UAV}}}}$${c_{{\text{near}},j}}$$ 5 \times {10^2}\; {\text{cycle/bit}}$
    $ {f_{{\text{user}},k}} $${\text{0}}{\text{.5 GHz}}$${f_{{\text{UAV}}}}$${\text{4 GHz}}$
    ${a_k}$${10^{ - 27}}$${a_{{\text{UAV}}}}$${a_{{\text{near}},j}}$${10^{ - 27}}$
    ${p_k}[n]$$ 0.01\;{\text{W}}, \forall k,n $${p_j}[n]$$ 0.0125\;{\text{W}}, \forall j,n $
    $ \sigma _{j,k}^2[n] $$ - 130\;{\text{dBm}}, \forall j,k,n $${ {{V} }_{\max } }$$ 50\;{\text{m/s}} $
    $ {\rho _0} $$ - 60\;{\text{dB}} $$ \varepsilon $$ {10^{ - 4}} $
    ${{{E}}_1}$$3.6\;{\text{kJ}}$${{{E}}_2}$$360\;{\text{kJ}}$
    ${{{E}}_3}$$36\;{\text{kJ}}$${{{M}}_{{\text{UAV}}}}$$9.65\;{\text{kg}}$
    下载: 导出CSV

    表  3  5种方案的用户、辅助无人机、临近无人机计算数据量和系统总延迟对比

    方案用户计算数
    据量(bit)
    辅助无人机计算
    数据量(bit)
    临近无人机计算
    数据量(bit)
    系统总延
    迟(s)
    1425011411467726031142.1251
    2424449111335926219172.12223
    34241192811356814623125821.2060
    4328242017183749992061.6412
    53281061117276719991267016.4053
    下载: 导出CSV

    表  4  5种方案的各临近无人机计算量对比(时刻n=1)

    方案无人机1(bit)无人机2(bit)无人机3(bit)无人机4(bit)
    144850285123940150602
    246543290474061752762
    3465139290337406029527704
    463817353764605954784
    5625691349530457020551674
    下载: 导出CSV
  • [1] ZHANG Shangwei, LIU Jiajia, and SUN Wen. Stochastic geometric analysis of multiple unmanned aerial vehicle-assisted communications over internet of things[J]. IEEE Internet of Things Journal, 2019, 6(3): 5446–5460. doi: 10.1109/JIOT.2019.2902162
    [2] YUAN Zhenhui, JIN Jie, SUN Lingling, et al. Ultra-reliable IoT communications with UAVs: A swarm use case[J]. IEEE Communications Magazine, 2018, 56(12): 90–96. doi: 10.1109/MCOM.2018.1800161
    [3] HAYAT S, YANMAZ E, and MUZAFFAR R. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2624–2661. doi: 10.1109/COMST.2016.2560343
    [4] VALCARCE A, RASHEED T, GOMEZ K, et al. Airborne base stations for emergency and temporary events[C]. Proceedings of the 5th International Conference on Personal Satellite Services, Toulouse, Fracne, 2013: 13–25.
    [5] ZENG Yong, ZHANG Rui, and TENG J L. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933
    [6] JEONG S, SIMEONE O, and KANG J. Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3): 2049–2063. doi: 10.1109/TVT.2017.2706308
    [7] ZHANG Tiankui, XU Yu, LOO J, et al. Joint computation and communication design for UAV-assisted mobile edge computing in IoT[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5505–5516. doi: 10.1109/TII.2019.2948406
    [8] MAO Yuyi, YOU Changsheng, ZHANG JUN, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    [9] HU Qiyu, CAI Yunlong, YU Guanding, et al. Joint offloading and trajectory design for UAV-enabled mobile edge computing systems[J]. IEEE Internet of Things Journal, 2019, 6(2): 1879–1892. doi: 10.1109/JIOT.2018.2878876
    [10] YU Zhe, GONG Yanmin, GONG Shimin, et al. Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(4): 3147–3159. doi: 10.1109/JIOT.2020.2965898
    [11] MEI Haibo, YANG Kun, LIU Qiang, et al. Joint trajectory-resource optimization in UAV-enabled edge-cloud system with virtualized mobile clone[J]. IEEE Internet of Things Journal, 2020, 7(7): 5906–5921. doi: 10.1109/JIOT.2019.2952677
    [12] ZHANG Liang and ANSARI N. Latency-aware IoT service provisioning in UAV-aided mobile-edge computing networks[J]. IEEE Internet of Things Journal, 2020, 7(10): 10573–10580. doi: 10.1109/JIOT.2020.3005117
    [13] SHI Qingjiang, PENG Cheng, XU Weiqiang, et al. Energy efficiency optimization for MISO SWIPT systems with zero-forcing beamforming[J]. IEEE Transactions on Signal Processing, 2016, 64(4): 842–854. doi: 10.1109/TSP.2015.2489603
    [14] CHO Y S, KIM J, YANG W Y, 等, 孙锴, 黄威, 译. MIMO-OFDM无线通信技术及MATLAB实现[M]. 北京: 电子工业出版社, 2013.

    CHO Y S, KIM J, YANG W Y, et al. , SUN Kai, HUANG Wei, trans. MIMO-OFDM Wireless Communications with MATLAB[M]. Beijing: Publishing House of Electronics Industry, 2013.
    [15] WU Qingqing, ZENG Yong, and ZHANG Rui. Joint trajectory and communication design for multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109–2121. doi: 10.1109/TWC.2017.2789293
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  819
  • HTML全文浏览量:  382
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-02-25
  • 录用日期:  2022-02-26
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回