高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扇区邻域特征工程的玻璃封装绝缘端子缺陷检测

蔡念 李炜博 黄钦豪 周帅 邱宝军 何兆泉

蔡念, 李炜博, 黄钦豪, 周帅, 邱宝军, 何兆泉. 基于扇区邻域特征工程的玻璃封装绝缘端子缺陷检测[J]. 电子与信息学报, 2022, 44(5): 1548-1553. doi: 10.11999/JEIT211346
引用本文: 蔡念, 李炜博, 黄钦豪, 周帅, 邱宝军, 何兆泉. 基于扇区邻域特征工程的玻璃封装绝缘端子缺陷检测[J]. 电子与信息学报, 2022, 44(5): 1548-1553. doi: 10.11999/JEIT211346
CAI Nian, LI Weibo, HUANG Qinhao, ZHOU Shuai, QIU Baojun, HE Zhaoquan. Defect Detection for Glass Seal Insulated Terminals Based on Sector Neighborhood Feature Engineering[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1548-1553. doi: 10.11999/JEIT211346
Citation: CAI Nian, LI Weibo, HUANG Qinhao, ZHOU Shuai, QIU Baojun, HE Zhaoquan. Defect Detection for Glass Seal Insulated Terminals Based on Sector Neighborhood Feature Engineering[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1548-1553. doi: 10.11999/JEIT211346

基于扇区邻域特征工程的玻璃封装绝缘端子缺陷检测

doi: 10.11999/JEIT211346
基金项目: 国家自然科学基金(62171142),广东省自然科学基金(2021A1515011908),惠州市高校科研专项资金(2019HZKY003)
详细信息
    作者简介:

    蔡念:男,1976年生,教授,研究方向为机器学习、机器视觉、数字信号处理等

    李炜博:男,1994年生,硕士生,研究方向为机器视觉、缺陷检测、图像分割

    周帅:男,1984年生,高级工程师,研究方向为微电子器件可靠性与检测评价

    邱宝军:男,1976年生,高级工程师,研究方向为电子元器件、电子组件可靠性检测、分析和评价和技术研究

    通讯作者:

    蔡念 cainian@gdut.edu.cn

  • 中图分类号: TP274; TP391.4

Defect Detection for Glass Seal Insulated Terminals Based on Sector Neighborhood Feature Engineering

Funds: The National Natural Science Foundation of China (62171142), The National Natural Science Foundation of Guangdong Province (2021A1515011908), The Research Fund for Colleges and Universities in Huizhou (2019HZKY003)
  • 摘要: 该文提出一种基于特征工程的玻璃封装绝缘端子外观质量检测算法以替代人工肉眼检测。首先,基于绝缘端子的形状先验将待检测区域划分为若干个扇区。其次,根据玻璃封装绝缘端子图像特点提出扇区基本特征数据、扇区灰度变化率、扇区反光特征和扇区方向统计特征等4大类扇区特征提取方法,采用梯度提升决策树(GBDT)进行粗分类。为了更全面地表征扇区特性,基于粗分类结果融合最近邻扇区提出扇区近邻(SN)特征提取方法。最后,将扇区近邻特征和扇区特征都输入到GBDT分类器进行精细分类,获得检测结果。实验结果表明,提出的特征工程方法能够在合理检测时间内取得较好的检测性能,交并比为97.45%,F1为0.987,优于现有类似检测方法。
  • 图  1  玻璃封装绝缘端子缺陷检测框架

    图  2  SN特征提取

    图  3  mn参数对算法性能的影响

    图  4  玻璃封装绝缘端子缺陷检测结果

    表  1  玻璃封装绝缘端子的缺陷检测对比结果

    算法IoU(%)F1POR(%)SER(%)时间(s/张)
    注意力模型[13]35.090.5190.8593.4788.08
    Otsu[11]60.040.7505.8297.8726.89
    DCT[12]89.700.9454.2883.9230.27
    形态学法[8]94.700.9724.1696.80522.90
    本文方法97.560.9870.6229.5033.72
    下载: 导出CSV
  • [1] GUO Hongwei, DANG Mengyang, LIU Lei, et al. Alkali barium glasses for hermetic compression seals: Compositional effect, processing, and sealing performance[J]. Ceramics International, 2019, 45(17): 22589–22595. doi: 10.1016/j.ceramint.2019.07.290
    [2] SHEN Ziqin, ZHANG Yong, CHEN Yongzhou, et al. Effect of pre-oxidization condition on glass-to-metal sealing[J]. Journal of Non-Crystalline Solids, 2019, 521: 119488. doi: 10.1016/j.jnoncrysol.2019.119488
    [3] THOMPSON L M, MAUGHAN M R, RINK K K, et al. Thermal induced stresses in bridge-wire initiator glass-to-metal seals[J]. Journal of Electronic Packaging, 2007, 129(3): 300–306. doi: 10.1115/1.2753920
    [4] LEI Dongqiang, WANG Zhifeng, and LI Jian. The calculation and analysis of glass-to-metal sealing stress in solar absorber tube[J]. Renewable Energy, 2010, 35(2): 405–411. doi: 10.1016/j.renene.2009.05.021
    [5] FAN Zhichun, HU Kangjia, HUANG Zhiyong, et al. Optimized sealing process and real-time monitoring of glass-to-metal seal structures[J]. Journal of Visualized Experiments, 2019(151): e60064. doi: 10.3791/60064
    [6] WANG Yang, HE Wei, MO Yunqi, et al. Failure analysis on the chip capacitor[C]. 2009 IEEE Circuits and Systems International Conference on Testing and Diagnosis, Chengdu, China, 2009.
    [7] KRIEGER V, WONDRAK W, DEHBI A, et al. Defect detection in multilayer ceramic capacitors[J]. Microelectronics Reliability, 2006, 46(9/11): 1926–1931. doi: 10.1016/j.microrel.2006.07.082
    [8] LIU Qunpo, WANG Manli, WANG Gaowei, et al. Detection algorithm of porosity defect on surface of micro-precision glass encapsulated electrical connectors[J]. Journal of Robotics, Networking and Artificial Life, 2020, 7(3): 212–216. doi: 10.2991/jrnal.k.200909.015
    [9] LIU Qunpo, WANG Mengke, LIU Zonghui, et al. Defect detection of micro-precision glass insulated terminals[J]. Journal of Robotics, Networking and Artificial Life, 2021, 8(1): 18–23. doi: 10.2991/jrnal.k.210521.005
    [10] LIU Qunpo, WANG Mengke, and HANAJIMA N. Defect sample generation system based on DCGAN for glass package electrical connectors[C]. Proceedings of 2020 Chinese Intelligent Systems Conference, Shenzhen, China, 2020: 434–441.
    [11] FU Li, ZHANG Shuai, GONG Yu, et al. Medicine glass bottle defect detection based on machine vision[C]. 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, 2019.
    [12] LIN H D and CHIU S W. Flaw detection of domed surfaces in LED packages by machine vision system[J]. Expert Systems with Applications, 2011, 38(12): 15208–15216. doi: 10.1016/j.eswa.2011.05.080
    [13] ZHOU Xianen, WANG Yaonan, ZHU Qing, et al. A surface defect detection framework for glass bottle bottom using visual attention model and wavelet transform[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2189–2201. doi: 10.1109/TII.2019.2935153
    [14] FRIEDMAN J H. Greedy function approximation: A gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189–1232. doi: 10.1214/aos/1013203451
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  384
  • HTML全文浏览量:  219
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 修回日期:  2022-02-18
  • 录用日期:  2022-02-23
  • 网络出版日期:  2022-03-05
  • 刊出日期:  2022-05-10

目录

    /

    返回文章
    返回