高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双曲函数的通用型荷控忆阻器电路等效模型分析

孙军伟 杨建领 刘鹏 王延峰

孙军伟, 杨建领, 刘鹏, 王延峰. 基于双曲函数的通用型荷控忆阻器电路等效模型分析[J]. 电子与信息学报, 2023, 45(2): 725-733. doi: 10.11999/JEIT211317
引用本文: 孙军伟, 杨建领, 刘鹏, 王延峰. 基于双曲函数的通用型荷控忆阻器电路等效模型分析[J]. 电子与信息学报, 2023, 45(2): 725-733. doi: 10.11999/JEIT211317
SUN Junwei, YANG Jianling, LIU Peng, WANG Yanfeng. Circuit Model Analysis of General Charge-controlled Memristor Based on Hyperbolic Functions[J]. Journal of Electronics & Information Technology, 2023, 45(2): 725-733. doi: 10.11999/JEIT211317
Citation: SUN Junwei, YANG Jianling, LIU Peng, WANG Yanfeng. Circuit Model Analysis of General Charge-controlled Memristor Based on Hyperbolic Functions[J]. Journal of Electronics & Information Technology, 2023, 45(2): 725-733. doi: 10.11999/JEIT211317

基于双曲函数的通用型荷控忆阻器电路等效模型分析

doi: 10.11999/JEIT211317
基金项目: 国家自然科学基金河南联合基金重点项目(U1804262),中原青年拔尖人才项目(ZYYCYU202012154),河南省教育厅科技创人才支持项目(20HASTIT027)
详细信息
    作者简介:

    孙军伟:男,副教授,研究方向为忆阻器模型及其电路实现

    杨建领:男,硕士生,研究方向为忆阻器模型及其电路实现

    刘鹏:男,讲师,研究方向为忆阻器模型及其电路实现

    王延峰:男,教授,研究方向为忆阻器模型及其电路实现

    通讯作者:

    孙军伟 junweisun@yeah.net

  • 中图分类号: TN601; TN751.2

Circuit Model Analysis of General Charge-controlled Memristor Based on Hyperbolic Functions

Funds: The Joint Funds of the National Natural Science Foundation of China (U1804262), The Zhongyuan Top Young Talents Program (ZYYCYU202012154), Henan Province University Science and Technology Innovation Talent Support Plan (20HASTIT027)
  • 摘要: 目前,忆阻器模拟器的研究主要集中在磁控忆阻器,对荷控忆阻器模拟器的研究不多,双曲函数型的荷控忆阻器模拟器也很少涉及。因此,该文提出一种基于双曲函数的通用型荷控忆阻器模拟器。模拟器通过电压-电流的相互转换电路,实现电路中电压和电流信号之间的相互转换,再通过电路中对应的电路模块对产生的信号进行计算,最终得到通用型双曲荷控忆阻器模型。模拟器能够实现双曲正弦、双曲余弦以及双曲正切函数对应的荷控忆阻器模型。通用型双曲函数荷控忆阻器模拟器对应的等效电路,主要由运算放大器、电阻、电容、三极管等基本元件组成。分析模拟器在不同幅值以及不同频率的输入信号下的伏安特性曲线,得出荷控忆阻器模拟器符合记忆元件的基本特性。该文提出的通用型双曲函数荷控忆阻器模型,对忆阻器模型的发展具有一定的参考意义。
  • 图  1  伏安特性曲线图

    图  2  通用双曲函数荷控忆阻器模型结构框图

    图  3  双曲荷控忆阻器模型电路图

    图  4  函数信号产生电路

    图  5  双曲正弦荷控忆阻器模型仿真图

    图  6  双曲余弦荷控忆阻器模型仿真图

    图  7  双曲正切荷控忆阻器模型仿真图

    表  1  双曲正弦荷控忆阻器数学模型和电路模型

    开关
    状态
    u1状态忆阻数学模型忆阻器电路模型
    S1断开
    S2闭合
    u1$ \ne $0$M(q) = a \cdot \sinh (b + cq) + {{p} }$$\begin{gathered} M(q) = \frac{ { {R_{12} } } }{ { {R_{11} } } }\frac{ { {R_{10} } } }{ { {R_8} } }\frac{ {l{R_{39} } } }{ { {R_{38} } } }{R_5} \cdot \sinh \left[\frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{16} } } }{u_1} \right.\\ \left. + \frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{15} } } }\rho q\right] + \frac{ { {R_{12} } } }{ { {R_{11} } } }\frac{ { {R_{10} } } }{ { {R_9} } }{R_7} \\ \end{gathered}$
    S1闭合
    S2闭合
    u1$ = $0$M(q) = a \cdot \sinh (cq + d{q^2}) + {{p} }$$\begin{gathered} M(q) = \frac{ { {R_{12} } } }{ { {R_{11} } } }\frac{ { {R_{10} } } }{ { {R_8} } }\frac{ {l{R_{39} } } }{ { {R_{38} } } }{R_5} \cdot \sinh \left[\frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{15} } } }\rho q \right. \\ \left. + \frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{14} } } }{\rho ^2}{q^2}\right] + \frac{ { {R_{12} } } }{ { {R_{11} } } }\frac{ { {R_{10} } } }{ { {R_9} } }{R_7} \\ \end{gathered}$
    S1闭合
    S2断开
    u1$ \ne $0$M(q) = a \cdot \sinh (b + d{q^2}) + {{p} }$$\begin{gathered} M(q) = \frac{ { {R_{12} } } }{ { {R_{11} } } }\frac{ { {R_{10} } } }{ { {R_8} } }\frac{ {l{R_{39} } } }{ { {R_{38} } } }{R_5} \cdot \sinh \left[\frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{16} } } }{u_1} \right. \\ \left. + \frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{14} } } }{\rho ^2}{q^2}\right] + \frac{ { {R_{12} } } }{ { {R_{11} } } }\frac{ { {R_{10} } } }{ { {R_9} } }{R_7} \\ \end{gathered}$
    S1闭合
    S2闭合
    u1$ \ne $0$\begin{gathered} M(q) = a \cdot \sinh (b + cq + d{q^2}) \\ {\text{ } } + {{p} } \\ \end{gathered}$$\begin{gathered} M(q) = \frac{ { {R_{12} } } }{ { {R_{11} } } }\frac{ { {R_{10} } } }{ { {R_8} } }\frac{ {l{R_{39} } } }{ { {R_{38} } } }{R_5} \cdot \sinh \left[\frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{16} } } }{u_1} \right. \\ \left.\frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{15} } } }\rho q{\text{ + } }\frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{14} } } }{\rho ^2}{q^2}\right] + \frac{ { {R_{12} } } }{ { {R_{11} } } }\frac{ { {R_{10} } } }{ { {R_9} } }{R_7} \\ \end{gathered}$
    下载: 导出CSV

    表  2  双曲余弦荷控忆阻器数学模型和电路模型

    开关
    状态
    u1状态忆阻数学模型忆阻器电路模型
    S1断开
    S2闭合
    u1$ \ne $0$M(q) = a'' \cdot \cosh (b'' + c''q) + {{p} }''$$ \begin{gathered} M(q) = \frac{{{R_{12}}}}{{{R_{11}}}}\frac{{{R_{10}}}}{{{R_8}}}\frac{{g{R_{33}}}}{{{R_{32}}}}{R_5} \cdot \cosh \left[\frac{{{R_{24}}}}{{\left( {{R_{23}} + {R_{24}}} \right){U_T}}}\frac{{{R_{19}}}}{{{R_{18}}}}\frac{{{R_{17}}}}{{{R_{16}}}}{u_1} \right.\\ \left. + \frac{{{R_{24}}}}{{\left( {{R_{23}} + {R_{24}}} \right){U_T}}}\frac{{{R_{19}}}}{{{R_{18}}}}\frac{{{R_{17}}}}{{{R_{15}}}}\rho q \right.] + \frac{{{R_{12}}}}{{{R_{11}}}}\frac{{{R_{10}}}}{{{R_9}}}{R_7} \\ \end{gathered} $
    S1闭合
    S2闭合
    u1$ = $0$\begin{gathered} M(q) = a'' \cdot \cosh (c''q + d''{q^2}) + \\ {{ p} }'' \\ \end{gathered}$$ \begin{gathered} M(q) = \frac{{{R_{12}}}}{{{R_{11}}}}\frac{{{R_{10}}}}{{{R_8}}}\frac{{{\text{g}}{R_{33}}}}{{{R_{32}}}}{R_5} \cdot \cosh \left.[\frac{{{R_{24}}}}{{\left( {{R_{23}} + {R_{24}}} \right){U_T}}}\frac{{{R_{19}}}}{{{R_{18}}}}\frac{{{R_{17}}}}{{{R_{15}}}}\rho q \right. \\ \left. + \frac{{{R_{24}}}}{{\left( {{R_{23}} + {R_{24}}} \right){U_T}}}\frac{{{R_{19}}}}{{{R_{18}}}}\frac{{{R_{17}}}}{{{R_{14}}}}{\rho ^2}{q^2}\right] + \frac{{{R_{12}}}}{{{R_{11}}}}\frac{{{R_{10}}}}{{{R_9}}}{R_7} \\ \end{gathered} $
    S1闭合
    S2断开
    u1$ \ne $0$M(q) = a'' \cdot \cosh (b'' + d''{q^2}) + {{p} }''$$\begin{gathered} M(q) = \frac{ { {R_{12} } } }{ { {R_{11} } } }\frac{ { {R_{10} } } }{ { {R_8} } }\frac{ { {\text{g} }{R_{33} } } }{ { {R_{32} } } }{R_5} \cdot \cosh \left[\frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{16} } } }{u_1} \right. \\ \left. + \frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{14} } } }{\rho ^2}{q^2}\right] + \frac{ { {R_{12} } } }{ { {R_{11} } } }\frac{ { {R_{10} } } }{ { {R_9} } }{R_7} \\ \end{gathered}$
    S1闭合
    S2闭合
    u1$ \ne $0$\begin{gathered} M(q) = a'' \cdot \cosh (b'' + c''q + \\ {\text{ } }d''{q^2}) + {{p} }'' \\ \end{gathered}$$ \begin{gathered} M(q) = \frac{{{R_{12}}}}{{{R_{11}}}}\frac{{{R_{10}}}}{{{R_8}}}\frac{{{\text{g}}{R_{33}}}}{{{R_{32}}}}{R_5} \cdot \cosh \left[\frac{{{R_{24}}}}{{\left( {{R_{23}} + {R_{24}}} \right){U_T}}}\frac{{{R_{19}}}}{{{R_{18}}}}\frac{{{R_{17}}}}{{{R_{16}}}}{u_1} \right.\\ \left.\frac{{{R_{24}}}}{{\left( {{R_{23}} + {R_{24}}} \right){U_T}}}\frac{{{R_{19}}}}{{{R_{18}}}}\frac{{{R_{17}}}}{{{R_{15}}}}\rho q{\text{ + }}\frac{{{R_{24}}}}{{\left( {{R_{23}} + {R_{24}}} \right){U_T}}}\frac{{{R_{19}}}}{{{R_{18}}}}\frac{{{R_{17}}}}{{{R_{14}}}}{\rho ^2}{q^2}\right] + \frac{{{R_{12}}}}{{{R_{11}}}}\frac{{{R_{10}}}}{{{R_9}}}{R_7} \\ \end{gathered} $
    下载: 导出CSV

    表  3  双曲正切荷控忆阻器数学模型和电路模型

    开关
    状态
    u1状态忆阻数学模型忆阻器电路模型
    S1断开
    S2闭合
    u1$ \ne $0$ M(q) = a''' \cdot \tanh (b''' + c'''q) $$ \begin{gathered} M(q) = \frac{{{R_{12}}}}{{{R_{11}}}}\frac{{{R_{10}}}}{{{R_8}}}\frac{{l{R_{32}}{R_{39}}}}{{{\text{g}}{R_{33}}{R_{38}}}}z{R_5} \cdot \tanh \left[\frac{{{R_{24}}}}{{\left( {{R_{23}} + {R_{24}}} \right){U_T}}}\frac{{{R_{19}}}}{{{R_{18}}}}\frac{{{R_{17}}}}{{{R_{16}}}}{u_1} \right. \\ \left. + \frac{{{R_{24}}}}{{\left( {{R_{23}} + {R_{24}}} \right){U_T}}}\frac{{{R_{19}}}}{{{R_{18}}}}\frac{{{R_{17}}}}{{{R_{15}}}}\rho q \right] \\ \end{gathered} $
    S1闭合
    S2闭合
    u1$ = $0$ M(q) = a''' \cdot \tanh (c'''q + d'''{q^2}) $$ \begin{gathered} M(q) = \frac{{{R_{12}}}}{{{R_{11}}}}\frac{{{R_{10}}}}{{{R_8}}}\frac{{l{R_{32}}{R_{39}}}}{{{\text{g}}{R_{33}}{R_{38}}}}z{R_5} \cdot \tanh \left[\frac{{{R_{24}}}}{{\left( {{R_{23}} + {R_{24}}} \right){U_T}}}\frac{{{R_{19}}}}{{{R_{18}}}}\frac{{{R_{17}}}}{{{R_{15}}}}\rho q \right.\\ \left. + \frac{{{R_{24}}}}{{\left( {{R_{23}} + {R_{24}}} \right){U_T}}}\frac{{{R_{19}}}}{{{R_{18}}}}\frac{{{R_{17}}}}{{{R_{14}}}}{\rho ^2}{q^2}\right] \\ \end{gathered} $
    S1闭合
    S2断开
    u1$ \ne $0$ M(q) = a''' \cdot \tanh (b''' + d'''{q^2}) $$ \begin{gathered} M(q) = \frac{{{R_{12}}}}{{{R_{11}}}}\frac{{{R_{10}}}}{{{R_8}}}\frac{{l{R_{32}}{R_{39}}}}{{{\text{g}}{R_{33}}{R_{38}}}}z{R_5} \cdot \tanh \left[\frac{{{R_{24}}}}{{\left( {{R_{23}} + {R_{24}}} \right){U_T}}}\frac{{{R_{19}}}}{{{R_{18}}}}\frac{{{R_{17}}}}{{{R_{16}}}}{u_1} \right. \\ \left. + \frac{{{R_{24}}}}{{\left( {{R_{23}} + {R_{24}}} \right){U_T}}}\frac{{{R_{19}}}}{{{R_{18}}}}\frac{{{R_{17}}}}{{{R_{14}}}}{\rho ^2}{q^2}\right] \\ \end{gathered} $
    S1闭合
    S2闭合
    u1$ \ne $0$ \begin{gathered} M(q) = a''' \cdot \tanh (b''' + c'''q + \\ {\text{ }}d'''{q^2}) \\ \end{gathered} $$\begin{gathered} M(q) = \frac{ { {R_{12} } } }{ { {R_{11} } } }\frac{ { {R_{10} } } }{ { {R_8} } }\frac{ {l{R_{32} }{R_{39} } } }{ { {\text{g} }{R_{33} }{R_{38} } } }z{R_5} \cdot \tanh \left[\frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{16} } } }{u_1} \right. \\ \left.\frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{15} } } }\rho q{\text{ + } }\frac{ { {R_{24} } } }{ {\left( { {R_{23} } + {R_{24} } } \right){U_T} } }\frac{ { {R_{19} } } }{ { {R_{18} } } }\frac{ { {R_{17} } } }{ { {R_{14} } } }{\rho ^2}{q^2}\right] \\ \end{gathered}$
    下载: 导出CSV
  • [1] CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/tct.1971.1083337
    [2] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
    [3] JIANG Zizhen, WU Yi, YU Shimeng, et al. A compact model for metal-oxide resistive random access memory with experiment verification[J]. IEEE Transactions on Electron Devices, 2016, 63(5): 1884–1892. doi: 10.1109/TED.2016.2545412
    [4] REUBEN J, BIGLARI M, and FEY D. Incorporating variability of resistive RAM in circuit simulations using the Stanford-PKU model[J]. IEEE Transactions on Nanotechnology, 2020, 19: 508–518. doi: 10.1109/TNANO.2020.3004666
    [5] KVATINSKY S, FRIEDMAN E G, KOLODNY A, et al. TEAM: Threshold adaptive memristor model[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2013, 60(1): 211–221. doi: 10.1109/TCSI.2012.2215714
    [6] YANG Zijia and WANG Xiaoping. Memristor-based BAM circuit implementation for image associative memory and filling-in[J]. Neural Computing and Applications, 2021, 33(13): 7929–7942. doi: 10.1007/s00521-020-05538-7
    [7] SUN Junwei, HAN Gaoyong, ZENG Zhigang, et al. Memristor-based neural network circuit of full-function Pavlov associative memory with time delay and variable learning rate[J]. IEEE Transactions on Cybernetics, 2020, 50(7): 2935–2945. doi: 10.1109/TCYB.2019.2951520
    [8] SUN Junwei, HAN Juntao, LIU Peng, et al. Memristor-based neural network circuit of Pavlov associative memory with dual mode switching[J]. AEU International Journal of Electronics and Communications, 2021, 129: 153552. doi: 10.1016/j.aeue.2020.153552
    [9] ZHU Ruohua, TANG Zhiri, YE Shizhuo, et al. Memristor-based image enhancement: High efficiency and robustness[J]. IEEE Transactions on Electron Devices, 2021, 68(2): 602–609. doi: 10.1109/TED.2020.3045684
    [10] CHEN Jiejie, ZENG Zhigang, and JIANG Ping. Global exponential almost periodicity of a delayed memristor-based neural networks[J]. Neural Networks, 2014, 60: 33–43. doi: 10.1016/j.neunet.2014.07.007
    [11] 闵富红, 王珠林, 王恩荣, 等. 新型忆阻器混沌电路及其在图像加密中的应用[J]. 电子与信息学报, 2016, 38(10): 2681–2688. doi: 10.11999/JEIT160178

    MIN Fuhong, WANG Zhulin, WANG Enrong, et al. New memristor chaotic circuit and its application to image encryption[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2681–2688. doi: 10.11999/JEIT160178
    [12] 王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics &Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821
    [13] SUN Junwei, XIAO Xiao, LIU Peng, et al. Memristive circuits design under different personality traits based on second-order damping system[J]. Microelectronics Journal, 2021, 114: 105148. doi: 10.1016/j.mejo.2021.105148
    [14] WANG Zilu, HONG Qinghui, and WANG Xiaoping. Memristive circuit design of emotional generation and evolution based on skin-like sensory processor[J]. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(4): 631–644. doi: 10.1109/TBCAS.2019.2923055
    [15] YU Dongsheng, ZHAO Xuanqi, SUN Tingting, et al. A simple floating mutator for emulating memristor, memcapacitor, and meminductor[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(7): 1334–1338. doi: 10.1109/TCSII.2019.2936453
    [16] 洪庆辉, 曾以成, 李志军. 含磁控和荷控两种忆阻器的混沌电路设计与仿真[J]. 物理学报, 2013, 62(23): 230502. doi: 10.7498/aps.62.230502

    HONG Qinghui, ZENG Yicheng, and LI Zhijun. Design and simulation of chaotic circuit for flux-controlled memristor and charge-controlled memristor[J]. Acta Physica Sinica, 2013, 62(23): 230502. doi: 10.7498/aps.62.230502
    [17] YANG Le, ZENG Zhigang, HUANG Yi, et al. Memristor-based circuit implementations of recognition network and recall network with forgetting stages[J]. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10(4): 1133–1142. doi: 10.1109/TCDS.2018.2859303
    [18] BAO Bocheng, QIAN Hui, XU Quan, et al. Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based hopfield neural network[J]. Frontiers in Computational Neuroscience, 2017, 11: 81. doi: 10.3389/fncom.2017.0008
    [19] 闵富红, 王珠林, 曹弋, 等. 基于双曲函数的双忆阻器混沌电路多稳态特性分析[J]. 电子学报, 2018, 46(2): 486–494. doi: 10.3969/j.issn.0372-2112.2018.02.031

    MIN Fuhong, WANG Zhulin, CAO Yi, et al. Multistability analysis of a dual-memristor circuit based on hyperbolic function[J]. Acta Electronica Sinica, 2018, 46(2): 486–494. doi: 10.3969/j.issn.0372-2112.2018.02.031
    [20] CORINTO F and ASCOLI A. Memristive diode bridge with LCR filter[J]. Electronics Letters, 2012, 48(14): 824–825. doi: 10.1049/el.2012.1480
    [21] BARBONI L. A novel passive circuit emulator for a current-controlled memristor[J]. Active and Passive Electronic Components, 2021, 2021: 5582774. doi: 10.1155/2021/5582774
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  955
  • HTML全文浏览量:  524
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 修回日期:  2022-05-05
  • 录用日期:  2022-05-17
  • 网络出版日期:  2022-05-20
  • 刊出日期:  2023-02-07

目录

    /

    返回文章
    返回