高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

距离约束分簇策略下无人机群空地组网性能分析

姚媛媛 乌云嘎 董瑶瑶 冯志勇 尉志青

姚媛媛, 乌云嘎, 董瑶瑶, 冯志勇, 尉志青. 距离约束分簇策略下无人机群空地组网性能分析[J]. 电子与信息学报, 2022, 44(3): 951-959. doi: 10.11999/JEIT211312
引用本文: 姚媛媛, 乌云嘎, 董瑶瑶, 冯志勇, 尉志青. 距离约束分簇策略下无人机群空地组网性能分析[J]. 电子与信息学报, 2022, 44(3): 951-959. doi: 10.11999/JEIT211312
YAO Yuanyuan, WU Yunga, DONG Yaoyao, FENG Zhiyong, WEI Zhiqing. Performance Analysis of Unmanned Aerial Vehicle Swarms Air-to-ground Networking under Distance-constrained Clustering Strategy[J]. Journal of Electronics & Information Technology, 2022, 44(3): 951-959. doi: 10.11999/JEIT211312
Citation: YAO Yuanyuan, WU Yunga, DONG Yaoyao, FENG Zhiyong, WEI Zhiqing. Performance Analysis of Unmanned Aerial Vehicle Swarms Air-to-ground Networking under Distance-constrained Clustering Strategy[J]. Journal of Electronics & Information Technology, 2022, 44(3): 951-959. doi: 10.11999/JEIT211312

距离约束分簇策略下无人机群空地组网性能分析

doi: 10.11999/JEIT211312
基金项目: 北京市自然科学基金-海淀原始创新联合基金(L192022),北京市教委科研计划(KM202011232002),北京市自然科学基金-市教委联合资助项目(KZ201911232046),泛网无线通信教育部重点实验室 (BUPT)项目(KFKT-2020105)
详细信息
    作者简介:

    姚媛媛:女,1988年生,副教授,硕士生导师,研究方向为无人机通信、智能化资源分配、无线携能通信等

    乌云嘎:女,1998年生,硕士生,研究方向为无人机通信、智能化资源分配等

    董瑶瑶:女,1994年生,硕士生,研究方向为无人机通信、智能化资源分配等

    冯志勇:女,1971年生,教授,博士生导师,研究方向为无线通信等

    尉志青:男,1987年生,副教授,博士生导师,研究方向为无线通信等

    通讯作者:

    冯志勇 fengzy@bupt.edu.cn

  • 中图分类号: TN929.5

Performance Analysis of Unmanned Aerial Vehicle Swarms Air-to-ground Networking under Distance-constrained Clustering Strategy

Funds: Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund (L192022), The Science and Technology Project of Beijing Municipal Education Commission (KM202011232002), Beijing Natural Science Foundation-Jointly Funded Project by the Municipal Education Commission (KZ201911232046), The Key Laboratory of Universal Wireless Communications (BUPT), Ministry of Education (KFKT-2020105)
  • 摘要: 在无人机(UAV)辅助的能量受限低功耗物联网(IoT)节点数据传输场景中,针对传统的Matérn聚类过程 (MCP)建模造成的无人机覆盖冗余问题,该文提出一种Matérn集群下的距离约束分簇策略(MCDC)。该策略采用带有距离约束的Matérn聚类过程对无人机和地面IoT节点位置进行了建模,实现冗余覆盖的大幅度下降。在此分布策略下,IoT节点首先通过从无人机发送的射频信号中收集能量,然后利用收集的能量向无人机进行上行数据传输,解决IoT节点能量受限问题。此外,分析了IoT节点传输机会以及无人机群空地网络的上行传输中断性能和吞吐量,并衡量了上下行阶段的时间分配比,无人机的发射功率,以及IoT节点密度等参数对网络性能的影响。最后通过仿真对理论结果进行了验证。
  • 图  1  系统模型

    图  2  MCDC策略下无人机通信网络

    图  3  IoT能量收集模型

    图  4  传输概率与时间分配比之间的关系

    图  5  不同情况下的无人机网络中断概率

    图  6  吞吐量随IoT密度变化趋势

    图  7  UAV发射功率和时间分配比对吞吐量的联合影响

    表  1  系统参数

    参数数值参数数值
    $ {P_{\text{t}}} $0.1~0.2 w$ {P_i} $1~2 mW
    $ \eta $0.56H20 m
    T1 sε–50 dB
    $ {\lambda _{\text{u}}} $10–4 /m2$ {\lambda _{\text{I}}} $10–3 /m2
    $ {\beta _{\text{a}}} $3$ {\beta _{\text{b}}} $3
    下载: 导出CSV
  • [1] 贾向东, 路艺, 纪澎善, 等. 大规模无人机协助的多层异构网络设计及性能研究[J]. 电子与信息学报, 2021, 43(9): 2632–2639. doi: 10.11999/JEIT200443

    JIA Xiangdong, LU Yi, JI Pengshan, et al. Design of large-scale UAV-assisted multi-tier heterogeneous networks and performance research[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2632–2639. doi: 10.11999/JEIT200443
    [2] JABBAR H, SONG Y S, and JEONG T T. RF energy harvesting system and circuits for charging of mobile devices[J]. IEEE Transactions on Consumer Electronics, 2010, 56(1): 247–253. doi: 10.1109/TCE.2010.5439152
    [3] LU Xiao, WANG Ping, NIYATO D, et al. Wireless charging technologies: Fundamentals, standards, and network applications[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2): 1413–1452. doi: 10.1109/COMST.2015.2499783
    [4] MA Dong, LAN Guohao, HASSAN M, et al. Sensing, computing, and communications for energy harvesting IoTs: A survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1222–1250. doi: 10.1109/COMST.2019.2962526
    [5] CHO S, LEE K, KANG B, et al. Weighted harvest-then-transmit: UAV-enabled wireless powered communication networks[J]. IEEE Access, 2018, 6: 72212–72224. doi: 10.1109/ACCESS.2018.2882128
    [6] YANG Zhaohui, XU Wei, and SHIKH-BAHAEI M. Energy efficient UAV communication with energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1913–1927. doi: 10.1109/TVT.2019.2961993
    [7] DU Yao, YANG Kun, WANG Kezhi, et al. Joint resources and workflow scheduling in UAV-enabled wirelessly-powered MEC for IoT systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 10187–10200. doi: 10.1109/TVT.2019.2935877
    [8] XU Jie, ZENG Yong, and ZHANG Rui. UAV-enabled wireless power transfer: Trajectory design and energy optimization[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5092–5106. doi: 10.1109/TWC.2018.2838134
    [9] CHEN Ruirui, LI Xinyan, SUN Yanjing, et al. Multi-UAV coverage scheme for average capacity maximization[J]. IEEE Communications Letters, 2020, 24(3): 653–657. doi: 10.1109/LCOMM.2019.2962774
    [10] WANG Jian, LIU Yongxin, NIU Shuteng, et al. Extensive throughput enhancement for 5G-enabled UAV swarm networking[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2021, 2(4): 199–208. doi: 10.1109/JMASS.2021.3067861
    [11] MIAO Jiansong, WANG Pengjie, ZHANG Qian, et al. Throughput maximization for multi-UAV enabled millimeter wave WPCN: Joint time and power allocation[J]. China Communications, 2020, 17(10): 142–156. doi: 10.23919/JCC.2020.10.010
    [12] JI Baofeng, LI Yuqi, ZHOU Benchuan, et al. Performance analysis of UAV relay assisted IoT communication network enhanced with energy harvesting[J]. IEEE Access, 2019, 7: 38738–38747. doi: 10.1109/ACCESS.2019.2906088
    [13] CHEN Qinbo. Joint position and resource optimization for multi-UAV-aided relaying systems[J]. IEEE Access, 2020, 8: 10403–10415. doi: 10.1109/ACCESS.2020.2965162
    [14] 李莉, 叶鹏, 彭张节, 等. 一种超密集异构网中联合干扰协调方法研究[J]. 电子与信息学报, 2019, 41(1): 9–15. doi: 10.11999/JEIT180290

    LI Li, YE Peng, PENG Zhangjie, et al. Research on joint interference coordination approach in ultra-dense heterogeneous network[J]. Journal of Electronics &Information Technology, 2019, 41(1): 9–15. doi: 10.11999/JEIT180290
    [15] ZHOU Lai, YANG Zhi, ZHOU Shidong, et al. Coverage probability analysis of UAV cellular networks in urban environments[C]. 2018 IEEE International Conference on Communications Workshops, Kansas City, USA, 2018.
    [16] LIU Chang, DING Ming, MA Chuan, et al. Performance analysis for practical unmanned aerial vehicle networks with LoS/NLoS transmissions[C]. 2018 IEEE International Conference on Communications Workshops, Kansas City, USA, 2018.
    [17] SAHA C, AFSHANG M, and DHILLON H S. Enriched K-tier HetNet model to enable the analysis of user-centric small cell deployments[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1593–1608. doi: 10.1109/TWC.2017.2649495
    [18] QIU Chen, WEI Zhiqing, FENG Zhiyong, et al. Joint resource allocation, placement and user association of multiple UAV-mounted base stations with in-band wireless backhaul[J]. IEEE Wireless Communications Letters, 2019, 8(6): 1575–1578. doi: 10.1109/LWC.2019.2928544
    [19] QIU Chen, WEI Zhiqing, YUAN Xin, et al. Multiple UAV-mounted base station placement and user association with joint fronthaul and backhaul optimization[J]. IEEE Transactions on Communications, 2020, 68(9): 5864–5877. doi: 10.1109/TCOMM.2020.3001136
    [20] MOHAMED Z and AÏSSA S. Leveraging UAVs with intelligent reflecting surfaces for energy-efficient communications with cell-edge users[C]. 2020 IEEE International Conference on Communications Workshops, Dublin, Ireland, 2020: 1–6.
    [21] HAYAJNEH A M, ZAIDI S A R, MCLERNON D C, et al. Performance analysis of UAV enabled disaster recovery network: A stochastic geometric framework based on matern cluster processes[C]. The 3rd International Conference on Intelligent Signal Processing, London, UK, 2017: 1–6.
    [22] ZHANG Shangwei and LIU Jiajia. Analysis and optimization of multiple unmanned aerial vehicle-assisted communications in post-disaster areas[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 12049–12060. doi: 10.1109/TVT.2018.2871614
    [23] LEE S, ZHANG Rui, and HUANG Kaibin. Opportunistic wireless energy harvesting in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(9): 4788–4799. doi: 10.1109/TWC.2013.072613.130323
    [24] ANDREWS J G, GUPTA A K, and DHILLON H S. A primer on cellular network analysis using stochastic geometry[J]. arXiv: 1604.03183, 2016.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  523
  • HTML全文浏览量:  210
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 修回日期:  2022-01-03
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回