高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低采样率数模转换器和模数转换器的太赫兹发射机线性化

肖尚辉 刘简 胡波 张梦瑶 全欣 徐强 潘文生 刘颖 邵士海 唐友喜

肖尚辉, 刘简, 胡波, 张梦瑶, 全欣, 徐强, 潘文生, 刘颖, 邵士海, 唐友喜. 基于低采样率数模转换器和模数转换器的太赫兹发射机线性化[J]. 电子与信息学报. doi: 10.11999/JEIT211304
引用本文: 肖尚辉, 刘简, 胡波, 张梦瑶, 全欣, 徐强, 潘文生, 刘颖, 邵士海, 唐友喜. 基于低采样率数模转换器和模数转换器的太赫兹发射机线性化[J]. 电子与信息学报. doi: 10.11999/JEIT211304
XIAO Shanghui, LIU Jian, HU Bo, ZHANG Mengyao, QUAN Xin, XU Qiang, PAN Wensheng, LIU Ying, SHAO Shihai, TANG Youxi. Linearization of Terahertz Transmitter Based on Low Sampling Rate DAC and ADC[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT211304
Citation: XIAO Shanghui, LIU Jian, HU Bo, ZHANG Mengyao, QUAN Xin, XU Qiang, PAN Wensheng, LIU Ying, SHAO Shihai, TANG Youxi. Linearization of Terahertz Transmitter Based on Low Sampling Rate DAC and ADC[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT211304

基于低采样率数模转换器和模数转换器的太赫兹发射机线性化

doi: 10.11999/JEIT211304
基金项目: 国家自然科学基金(62071094, 61901396)
详细信息
    作者简介:

    肖尚辉:男,博士生,研究方向为协作通信、多天线MIMO无线通信信号处理

    刘简:女,硕士生,研究方向为数字预失真、无线通信中的数字信号处理

    胡波:男,硕士,高工,研究方向为信息通信

    张梦瑶:女,硕士生,研究方向为数字预失真、无线通信中的数字信号处理

    全欣:女,讲师,研究方向为全双工自干扰抑制

    徐强:男,讲师,研究方向为协作通信、多天线MIMO无线通信信号处理

    潘文生:男,副教授,研究方向为高效率功率放大器、峰均比抑制和数字预失真技术

    刘颖:男,副教授,研究方向为数字预失真、无线通信信号处理

    邵士海:男,教授,研究方向为全双工通信理论、可重构射频电路

    唐友喜:男,教授,研究方向为无线通信中的信号处理、传感器网络

    通讯作者:

    刘颖 yliu85@uestc.edu.cn

  • 中图分类号: TN792

Linearization of Terahertz Transmitter Based on Low Sampling Rate DAC and ADC

Funds: The National Natural Science Foundation of China (62071094, 61901396)
  • 摘要: 太赫兹(THz)频率高、带宽大,是6G移动通信中极具优势的潜在无线频谱资源。然而太赫兹器件的非线性失真,限制了功率转换效率与通信传输距离。若采用传统数字预失真(DPD)技术对其进行非线性校正,通常要求数模转换器(DAC)和模数转换器(ADC)的采样速率达到信号带宽的5倍,对于太赫兹频段难以应用。因此,该文提出一种低速率DAC和ADC的DPD算法对太赫兹发射机的非线性进行校正。该方法主要分为3个步骤:首先利用低采样率ADC获取的观测数据进行上采样,恢复出带宽受限的高采样率的观测信号,此时信号采样率为信号带宽的5倍,可以有效表征出5阶非线性失真;然后建立带宽受限的DPD模型,采用最小二乘算法提取DPD校正系数;最后对校正后的信号进行下采样送往DAC以校正发射通道的非线性失真。仿真结果表明,当DAC和ADC工作在1.25倍基带信号速率的采样率条件下,对于64-QAM调制信号,该方法可以把误差矢量幅值(EVM)从8.46%降低到2.27%,从而可以支持更高阶的调制方式。
  • 图  1  基于提出DPD方案的220 G太赫兹链路结构

    图  2  EVM性能与传输功率的关系(64-QAM)

    图  3  未校正与本文所提方法DPD校正AM-AM与AM-PM特性比较(64-QAM)

    图  4  未校正与本文所提DPD校正接收机星座图对比(64-QAM)

    图  5  未校正与本文所提DPD校正接收机星座图对比(256-QAM)

  • [1] CHEN Zhi, MA Xinying, ZHANG Bo, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2): 1–35. doi: 10.12676/j.cc.2019.02.001
    [2] GIORDANI M, POLESE M, MEZZAVILLA M, et al. Toward 6G networks: use cases and technologies[J]. IEEE Communications Magazine, 2020, 58(3): 55–61. doi: 10.1109/MCOM.001.1900411
    [3] RAPPAPORT T S, XING Yunchou, KANHERE O, et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond[J]. IEEE Access, 2019, 7: 78729–78757. doi: 10.1109/ACCESS.2019.2921522
    [4] SARIEDDEEN H, ALOUINI M S, and AL-NAFFOURI T Y. An overview of signal processing techniques for terahertz communications[J]. Proceedings of the IEEE, 2021, 109(10): 1628–1665. doi: 10.1109/JPROC.2021.3100811
    [5] ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208
    [6] LI Yue, WANG Xiaoyu, and ZHU Anding. Sampling rate reduction for digital predistortion of broadband RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(3): 1054–1064. doi: 10.1109/TMTT.2019.2944813
    [7] TAROKH V and JAFARKHANI H. On the computation and reduction of the peak-to-average power ratio in multicarrier communications[J]. IEEE Transactions on Communications, 2000, 48(1): 37–44. doi: 10.1109/26.818871
    [8] YU Chao, LU Qianyun, YIN Hang, et al. Linear-decomposition digital predistortion of power amplifiers for 5G ultrabroadband applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 68(7): 2833–2844. doi: 10.1109/TMTT.2020.2975637
    [9] YU Chao, GUAN Lei, ZHU Erni, et al. Band-limited volterra series-based digital predistortion for wideband RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 4198–4208. doi: 10.1109/TMTT.2012.2222658
    [10] UI N, SANO H, and SANO S. A 80W 2-stage GaN HEMT doherty amplifier with 50dBc ACLR, 42% efficiency 32dB gain with DPD for W-CDMA base station[C]. 2007 IEEE/MTT-S International Microwave Symposium, Honolulu, USA, 2007: 1259–1262.
    [11] DING Lei, ZHOU G T, MORGAN D R, et al. A robust digital baseband predistorter constructed using memory polynomials[J]. IEEE Transactions on Communications, 2004, 52(1): 159–165. doi: 10.1109/TCOMM.2003.822188
    [12] GUAN Lei and ZHU Anding. Optimized low-complexity implementation of least squares based model extraction for digital predistortion of RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 594–603. doi: 10.1109/TMTT.2011.2182656
    [13] LIU Shanyun, YU Xianbin, GUO Rongbin, et al. THz channel modeling: consolidating the road to THz communications[J]. China Communications, 2021, 18(5): 33–49. doi: 10.23919/JCC.2021.05.003
    [14] IEEE. IEEE Std P802.3ah/D3.3 IEEE draft amendment to carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications IEEE draft amendment to - information technology - telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements - part 3: carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications - media access control parameters, physical layers and management parameters for subscriber access networks (amendment to 802.3-2002)[S]. IEEE, 2004.
    [15] AKYILDIZ I F, HAN Chong, and NIE Shuai. Combating the distance problem in the millimeter wave and terahertz frequency bands[J]. IEEE Communications Magazine, 2018, 56(6): 102–108. doi: 10.1109/MCOM.2018.1700928
    [16] CARPENTER S, NOPCHINDA D, ABBASI M, et al. A D-band 48-Gbit/s 64-QAM/QPSK direct-conversion I/Q transceiver chipset[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(4): 1285–1296. doi: 10.1109/TMTT.2016.2533491
    [17] Texas Instruments. DAC38RF82[EB/OL]. https://www.ti.com/product/DAC38RF82, 2020.
    [18] Texas Instruments. ADC12DJ3200[EB/OL]. https://www.ti.com/product/ADC12DJ3200, 2020.
    [19] WTSC, Wireless Technologies and Systems Committee. ATIS. 3GPP TS 38.141-1. V16.4. 0 3rd generation partnership project; technical specification group radio access network; NR; base station (BS) conformance testing part 1: conducted conformance testing[S]. Washington, USA: ATIS, 2020.
  • 加载中
图(5)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  68
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 录用日期:  2022-03-03
  • 修回日期:  2022-02-23
  • 网络出版日期:  2022-03-07

目录

    /

    返回文章
    返回