[1] |
谢军, 庄建楼, 康成斌. 基于北斗系统的物联网技术与应用[J]. 南京航空航天大学学报, 2021, 53(3): 329–337. doi: 10.16356/j.1005-2615.2021.03.001XIE Jun, ZHUANG Jianlou, and KANG Chengbin. Internet of things technology and application based on Beidou system[J]. Journal of Nanjing University of Aeronautics &Astronautics, 2021, 53(3): 329–337. doi: 10.16356/j.1005-2615.2021.03.001
|
[2] |
张天宇, 赵宇超, 王重阳. 基于LoRa技术的同步相量采集系统设计与研究[J]. 南方电网技术, 2020, 14(8): 41–44. doi: 10.13648/j.cnki.issn1674-0629.2020.08.006ZHANG Tianyu, ZHAO Yuchao, and WANG Chongyang. Design and research of phasor measurement system based on LoRa technology[J]. Southern Power System Technology, 2020, 14(8): 41–44. doi: 10.13648/j.cnki.issn1674-0629.2020.08.006
|
[3] |
孙浩洋, 张冀川, 王鹏, 等. 面向配电物联网的边缘计算技术[J]. 电网技术, 2019, 43(12): 4314–4321. doi: 10.13335/j.1000-3673.pst.2019.1750SUN Haoyang, ZHANG Jichuan, WANG Peng, et al. Edge computation technology based on distribution internet of things[J]. Power System Technology, 2019, 43(12): 4314–4321. doi: 10.13335/j.1000-3673.pst.2019.1750
|
[4] |
王承祥, 黄杰, 王海明, 等. 面向6G的无线通信信道特性分析与建模[J]. 物联网学报, 2020, 4(1): 19–32. doi: 10.11959/j.issn.2096?3750.2020.00155WANG Chengxiang, HUANG Jie, WANG Haiming, et al. 6G oriented wireless communication channel characteristics analysis and modeling[J]. Chinese Journal on Internet of Things, 2020, 4(1): 19–32. doi: 10.11959/j.issn.2096?3750.2020.00155
|
[5] |
廖家齐, 钱科军, 方华亮, 等. 基于泛在电力物联网的电动汽车充电站运维关键技术[J]. 电力建设, 2019, 40(9): 20–26. doi: 10.3969/j.issn.1000-7229.2019.09.003LIAO Jiaqi, QIAN Kejun, FANG Hualiang, et al. Key technologies of operation and maintenance of electric vehicle charging stations in ubiquitous power internet of things[J]. Electric Power Construction, 2019, 40(9): 20–26. doi: 10.3969/j.issn.1000-7229.2019.09.003
|
[6] |
伍晓平. 电力物联网信息模型及通信协议的设计与实现[J]. 电子世界, 2020(3): 165–166. doi: 10.19353/j.cnki.dzsj.2020.03.092WU Xiaoping. Design of the power internet of things[J]. Electronics World, 2020(3): 165–166. doi: 10.19353/j.cnki.dzsj.2020.03.092
|
[7] |
HE Ruisi, AI Bo, STÜBER G L, et al. Geometrical-based modeling for millimeter-wave MIMO mobile-to-mobile channels[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 2848–2863. doi: 10.1109/TVT.2017.2774808
|
[8] |
JIANG Hao, ZHANG Zaichen, DANG Jian, et al. Analysis of geometric multibounced virtual scattering channel model for dense urban street environments[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3): 1903–1912. doi: 10.1109/TVT.2016.2574925
|
[9] |
JIANG Hao, ZHANG Zaichen, WU Liang, et al. A 3-D non-stationary wideband geometry-based channel model for MIMO vehicle-to-vehicle communications in tunnel environments[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6257–6271. doi: 10.1109/TVT.2019.2918333
|
[10] |
WU Shangbin, WANG Chengxiang, AGGOUNE E H M, et al. A non-stationary 3-D wideband twin-cluster model for 5G massive MIMO channels[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1207–1218. doi: 10.1109/JSAC.2014.2328131
|
[11] |
BIAN Ji, WANG Chengxiang, GAO Xiqi, et al. A general 3D non-stationary wireless channel model for 5G and beyond[J]. IEEE Transactions on Wireless Communications, 2021, 20(5): 3211–3224. doi: 10.1109/TWC.2020.3047973
|
[12] |
HE Ruisi, AI Bo, STÜBER G L, et al. Mobility model-based non-stationary mobile-to-mobile channel modeling[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4388–4400. doi: 10.1109/TWC.2018.2824804
|
[13] |
ZHANG Jianhua, PAN Chun, PEI Feng, et al. Three-dimensional fading channel models: A survey of elevation angle research[J]. IEEE Communications Magazine, 2014, 52(6): 218–226. doi: 10.1109/MCOM.2014.6829967
|
[14] |
JIANG Hao, ZHANG Zaichen, DANG Jian, et al. A novel 3-D massive MIMO channel model for vehicle-to-vehicle communication environments[J]. IEEE Transactions on Communications, 2018, 66(1): 79–90. doi: 10.1109/TCOMM.2017.2751555
|
[15] |
YUAN Yi, WANG Chengxiang, CHENG Xiang, et al. Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels[J]. IEEE Transactions on Wireless Communications, 2014, 13(1): 298–309. doi: 10.1109/TWC.2013.120313.130434
|
[16] |
YUAN Yi, WANG Chengxiang, HE Yejun, et al. 3D wideband non-stationary geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6883–6895. doi: 10.1109/TWC.2015.2461679
|
[17] |
TAN Yi, WANG Chengxiang, NIELSEN J Ø, et al. A novel B5G frequency nonstationary wireless channel model[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 4846–4860. doi: 10.1109/TAP.2021.3060063
|
[18] |
YANG Mi, AI Bo, HE Ruisi, et al. Non-stationary vehicular channel characterization in complicated scenarios[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8387–8400. doi: 10.1109/TVT.2021.3096973
|
[19] |
GHAZAL A, YUAN Yi, WANG Chengxiang, et al. A non-stationary IMT-advanced MIMO channel model for high-mobility wireless communication systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(4): 2057–2068. doi: 10.1109/TWC.2016.2628795
|
[20] |
JIANG Hao, XIONG Baiping, ZHANG Zaichen, et al. Novel statistical wideband MIMO V2V channel modeling using unitary matrix transformation algorithm[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4947–4961. doi: 10.1109/TWC.2021.3063762
|