高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向电力物联网三维空间几何信道建模的研究

秦剑华 杨穆天 路永玲 王真 胡成博

秦剑华, 杨穆天, 路永玲, 王真, 胡成博. 面向电力物联网三维空间几何信道建模的研究[J]. 电子与信息学报, 2022, 44(9): 3051-3057. doi: 10.11999/JEIT211300
引用本文: 秦剑华, 杨穆天, 路永玲, 王真, 胡成博. 面向电力物联网三维空间几何信道建模的研究[J]. 电子与信息学报, 2022, 44(9): 3051-3057. doi: 10.11999/JEIT211300
QIN Jianhua, YANG Mutian, LU Yongling, WANG Zhen, HU Chengbo. Research on Three-Dimensional Geometry-Based Channel Modeling for Power Internet of Things Communications[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3051-3057. doi: 10.11999/JEIT211300
Citation: QIN Jianhua, YANG Mutian, LU Yongling, WANG Zhen, HU Chengbo. Research on Three-Dimensional Geometry-Based Channel Modeling for Power Internet of Things Communications[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3051-3057. doi: 10.11999/JEIT211300

面向电力物联网三维空间几何信道建模的研究

doi: 10.11999/JEIT211300
详细信息
    作者简介:

    秦剑华:男,博士,工程师,研究方向为电力物联网技术、设备状态信息评估技术

    杨穆天:男,研究方向为自动化控制和人工智能

    路永玲:女,硕士,高级工程师,研究方向为电力智能运检关键技术

    王真:男,硕士,工程师,研究方向为电力智能运检关键技术

    胡成博:男,硕士,高级工程师,研究方向为电力物联网技术、设备状态智能诊断技术等

    通讯作者:

    秦剑华 nannan828@126.com

  • 中图分类号: TN929.53

Research on Three-Dimensional Geometry-Based Channel Modeling for Power Internet of Things Communications

  • 摘要: 当前研究主要采用椭圆模型描述第6代 (6G)电力物联网(IoT)物理层多节点通信场景,忽视了信号传输路径的俯仰角对系统性能造成的影响。为解决这一问题,该文通过建立3维半椭球体几何传输模型描述6G电力物联网物理层通信场景,提高了电力物联网异构网物理层数据传输分析过程中的准确度。在提出的传输分析算法中,通过推导电力物联网通信无线传输信道中不同传输路径的复冲激响应函数表达式,揭示物理层数据的传输特性。数值分析不同传输路径间的互相关特性,探索电力物联网的时域传输特性,验证上述信道传输特性仿真结果的正确性,对于分析与设计电力物联网无线通信系统具有重要的理论依据和技术支撑。
  • 图  1  电力物联网物理层信道传输模型

    图  2  空间互相关特性与天线间距的关系

    图  3  不同运动时间$ t $和不同参数($ {\kappa _1} $$ {\kappa _2} $)对信道空间互相关特性造成的影响

    图  4  不同运动时间$ t $和不同参数($ {\kappa _1} $$ {\kappa _2} $)对信道时域自相关特性造成的影响

    图  5  信道在不同时刻下有/无直达路径分量时的时域自相关特性

    图  6  不同运动时间$ t $和不同参数($ {\kappa _1} $$ {\kappa _2} $)对信道多普勒功率谱造成的影响

  • [1] 谢军, 庄建楼, 康成斌. 基于北斗系统的物联网技术与应用[J]. 南京航空航天大学学报, 2021, 53(3): 329–337. doi: 10.16356/j.1005-2615.2021.03.001

    XIE Jun, ZHUANG Jianlou, and KANG Chengbin. Internet of things technology and application based on Beidou system[J]. Journal of Nanjing University of Aeronautics &Astronautics, 2021, 53(3): 329–337. doi: 10.16356/j.1005-2615.2021.03.001
    [2] 张天宇, 赵宇超, 王重阳. 基于LoRa技术的同步相量采集系统设计与研究[J]. 南方电网技术, 2020, 14(8): 41–44. doi: 10.13648/j.cnki.issn1674-0629.2020.08.006

    ZHANG Tianyu, ZHAO Yuchao, and WANG Chongyang. Design and research of phasor measurement system based on LoRa technology[J]. Southern Power System Technology, 2020, 14(8): 41–44. doi: 10.13648/j.cnki.issn1674-0629.2020.08.006
    [3] 孙浩洋, 张冀川, 王鹏, 等. 面向配电物联网的边缘计算技术[J]. 电网技术, 2019, 43(12): 4314–4321. doi: 10.13335/j.1000-3673.pst.2019.1750

    SUN Haoyang, ZHANG Jichuan, WANG Peng, et al. Edge computation technology based on distribution internet of things[J]. Power System Technology, 2019, 43(12): 4314–4321. doi: 10.13335/j.1000-3673.pst.2019.1750
    [4] 王承祥, 黄杰, 王海明, 等. 面向6G的无线通信信道特性分析与建模[J]. 物联网学报, 2020, 4(1): 19–32. doi: 10.11959/j.issn.2096?3750.2020.00155

    WANG Chengxiang, HUANG Jie, WANG Haiming, et al. 6G oriented wireless communication channel characteristics analysis and modeling[J]. Chinese Journal on Internet of Things, 2020, 4(1): 19–32. doi: 10.11959/j.issn.2096?3750.2020.00155
    [5] 廖家齐, 钱科军, 方华亮, 等. 基于泛在电力物联网的电动汽车充电站运维关键技术[J]. 电力建设, 2019, 40(9): 20–26. doi: 10.3969/j.issn.1000-7229.2019.09.003

    LIAO Jiaqi, QIAN Kejun, FANG Hualiang, et al. Key technologies of operation and maintenance of electric vehicle charging stations in ubiquitous power internet of things[J]. Electric Power Construction, 2019, 40(9): 20–26. doi: 10.3969/j.issn.1000-7229.2019.09.003
    [6] 伍晓平. 电力物联网信息模型及通信协议的设计与实现[J]. 电子世界, 2020(3): 165–166. doi: 10.19353/j.cnki.dzsj.2020.03.092

    WU Xiaoping. Design of the power internet of things[J]. Electronics World, 2020(3): 165–166. doi: 10.19353/j.cnki.dzsj.2020.03.092
    [7] HE Ruisi, AI Bo, STÜBER G L, et al. Geometrical-based modeling for millimeter-wave MIMO mobile-to-mobile channels[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 2848–2863. doi: 10.1109/TVT.2017.2774808
    [8] JIANG Hao, ZHANG Zaichen, DANG Jian, et al. Analysis of geometric multibounced virtual scattering channel model for dense urban street environments[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3): 1903–1912. doi: 10.1109/TVT.2016.2574925
    [9] JIANG Hao, ZHANG Zaichen, WU Liang, et al. A 3-D non-stationary wideband geometry-based channel model for MIMO vehicle-to-vehicle communications in tunnel environments[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6257–6271. doi: 10.1109/TVT.2019.2918333
    [10] WU Shangbin, WANG Chengxiang, AGGOUNE E H M, et al. A non-stationary 3-D wideband twin-cluster model for 5G massive MIMO channels[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1207–1218. doi: 10.1109/JSAC.2014.2328131
    [11] BIAN Ji, WANG Chengxiang, GAO Xiqi, et al. A general 3D non-stationary wireless channel model for 5G and beyond[J]. IEEE Transactions on Wireless Communications, 2021, 20(5): 3211–3224. doi: 10.1109/TWC.2020.3047973
    [12] HE Ruisi, AI Bo, STÜBER G L, et al. Mobility model-based non-stationary mobile-to-mobile channel modeling[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4388–4400. doi: 10.1109/TWC.2018.2824804
    [13] ZHANG Jianhua, PAN Chun, PEI Feng, et al. Three-dimensional fading channel models: A survey of elevation angle research[J]. IEEE Communications Magazine, 2014, 52(6): 218–226. doi: 10.1109/MCOM.2014.6829967
    [14] JIANG Hao, ZHANG Zaichen, DANG Jian, et al. A novel 3-D massive MIMO channel model for vehicle-to-vehicle communication environments[J]. IEEE Transactions on Communications, 2018, 66(1): 79–90. doi: 10.1109/TCOMM.2017.2751555
    [15] YUAN Yi, WANG Chengxiang, CHENG Xiang, et al. Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels[J]. IEEE Transactions on Wireless Communications, 2014, 13(1): 298–309. doi: 10.1109/TWC.2013.120313.130434
    [16] YUAN Yi, WANG Chengxiang, HE Yejun, et al. 3D wideband non-stationary geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6883–6895. doi: 10.1109/TWC.2015.2461679
    [17] TAN Yi, WANG Chengxiang, NIELSEN J Ø, et al. A novel B5G frequency nonstationary wireless channel model[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 4846–4860. doi: 10.1109/TAP.2021.3060063
    [18] YANG Mi, AI Bo, HE Ruisi, et al. Non-stationary vehicular channel characterization in complicated scenarios[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8387–8400. doi: 10.1109/TVT.2021.3096973
    [19] GHAZAL A, YUAN Yi, WANG Chengxiang, et al. A non-stationary IMT-advanced MIMO channel model for high-mobility wireless communication systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(4): 2057–2068. doi: 10.1109/TWC.2016.2628795
    [20] JIANG Hao, XIONG Baiping, ZHANG Zaichen, et al. Novel statistical wideband MIMO V2V channel modeling using unitary matrix transformation algorithm[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4947–4961. doi: 10.1109/TWC.2021.3063762
  • 加载中
图(6)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  229
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 修回日期:  2022-04-13
  • 网络出版日期:  2022-04-19
  • 刊出日期:  2022-09-19

目录

    /

    返回文章
    返回