[1] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
|
[2] |
WEN Jinming, ZHANG Rui, and YU Wei. Signal-dependent performance analysis of orthogonal matching pursuit for exact sparse recovery[J]. IEEE Transactions on Signal Processing, 2020, 68: 5031–5046. doi: 10.1109/TSP.2020.3016571
|
[3] |
CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
|
[4] |
MALLAT S G and ZHANG Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415. doi: 10.1109/78.258082
|
[5] |
PATI Y C, REZAIIFAR R, and KRISHNAPRASAD P S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[C]. 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 1993: 40–44.
|
[6] |
NEEDELL D and VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310–316. doi: 10.1109/JSTSP.2010.2042412
|
[7] |
GOYAL P and SINGH B. Sparse signal recovery through regularized orthogonal matching pursuit for WSNs applications[C]. 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2019: 461–465.
|
[8] |
WANG Jian, KWON S, and SHIM B. Generalized orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6202–6216. doi: 10.1109/TSP.2012.2218810
|
[9] |
申滨, 吴和彪, 崔太平, 等. 基于最优索引广义正交匹配追踪的非正交多址系统多用户检测[J]. 电子与信息学报, 2020, 42(3): 621–628. doi: 10.11999/JEIT190270SHEN Bin, WU Hebiao, CUI Taiping, et al. An optimal number of indices aided gOMP algorithm for multi-user detection in NOMA System[J]. Journal of Electronics &Information Technology, 2020, 42(3): 621–628. doi: 10.11999/JEIT190270
|
[10] |
DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094–1121. doi: 10.1109/TIT.2011.2173241
|
[11] |
CHEN Jing, CHEN Yan, WU Lei, et al. An improved stagewise weak orthogonal matching pursuit method for electric power transmission tower evaluation using differential sar tomography[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 3637–3640.
|
[12] |
DO T T, GAN Lu, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]. 2008 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2008: 581–587.
|
[13] |
吴新杰, 闫诗雨, 徐攀峰, 等. 基于稀疏度自适应压缩感知的电容层析成像图像重建算法[J]. 电子与信息学报, 2018, 40(5): 1250–1257. doi: 10.11999/JEIT170794WU Xinjie, YAN Shiyu, XU Panfeng, et al. Image reconstruction algorithm for electrical capacitance tomography based on sparsity adaptive compressed sensing[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1250–1257. doi: 10.11999/JEIT170794
|
[14] |
李保珠, 邵建华, 聂梦雅, 等. 基于能量的稀疏自适应匹配追踪算法[J]. 计算机应用与软件, 2015, 32(11): 121–125. doi: 10.3969/j.issn.1000-386x.2015.11.028LI Baozhu, SHAO Jianhua, NIE Mengya, et al. Energy-based sparsity adaptive matching pursuit algorithm[J]. Computer Applications and Software, 2015, 32(11): 121–125. doi: 10.3969/j.issn.1000-386x.2015.11.028
|
[15] |
ZHANG Yi, VENKATESAN R, DOBRE O A, et al. Efficient estimation and prediction for sparse time-varying underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering, 2020, 45(3): 1112–1125. doi: 10.1109/JOE.2019.2911446
|
[16] |
朱延万, 赵拥军, 孙兵. 一种改进的稀疏度自适应匹配追踪算法[J]. 信号处理, 2012, 28(1): 80–86. doi: 10.3969/j.issn.1003-0530.2012.01.012ZHU Yanwan, ZHAO Yongjun, and SUN Bing. A modified sparsity adaptive matching pursuit algorithm[J]. Signal Processing, 2012, 28(1): 80–86. doi: 10.3969/j.issn.1003-0530.2012.01.012
|
[17] |
CHATTERJEE S, SUNDMAN D, VEHKAPERA M, et al. Projection-based and look-ahead strategies for atom selection[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 634–647. doi: 10.1109/TSP.2011.2173682
|
[18] |
HANG Jinwei and HUANG Yuanhao. A high-SNR projection-based atom selection OMP processor for compressive sensing[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(12): 3477–3488. doi: 10.1109/TVLSI.2016.2554401
|
[19] |
AMBAT S K, CHATTERJEE S, and HARI K V S. On selection of search space dimension in compressive sampling matching pursuit[C]. TENCON 2012 IEEE Region 10 Conference, Cebu, Philippines, 2012: 1–5.
|
[20] |
NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301–321. doi: 10.1016/J.ACHA.2008.07.002
|
[21] |
CHENG Jiawei. An improved off-grid algorithm based on CoSaMP for ISAR imaging[C]. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 2020: 1643–1646,
|
[22] |
CHAE J and HONG S. Greedy algorithms for sparse and positive signal recovery based on Bit-Wise MAP detection[J]. IEEE Transactions on Signal Processing, 2020, 68: 4017–4029. doi: 10.1109/TSP.2020.3004700
|
[23] |
DAI Wei and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230–2249. doi: 10.1109/TIT.2009.2016006
|
[24] |
LIU Yizhong, SONG Tian, and ZHUANG Yiqi. A high-throughput subspace pursuit processor for ECG recovery in compressed sensing using square-root-free MGS QR decomposition[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(1): 174–187. doi: 10.1109/TVLSI.2019.2936867
|
[25] |
LIU Lufeng, DU Xinpeng, and CHENG Lizhi. Stable signal recovery via randomly enhanced adaptive subspace pursuit method[J]. IEEE Signal Processing Letters, 2013, 20(8): 823–826. doi: 10.1109/LSP.2013.2267796
|
[26] |
LIU Guangcan, ZHANG Zhao, LIU Qingshan, et al. Robust subspace clustering with compressed data[J]. IEEE Transactions on Image Processing, 2019, 28(10): 5161–5170. doi: 10.1109/TIP.2019.2917857
|
[27] |
AMBAT S K, CHATTERJEE S, and HARI K V S. Subspace pursuit embedded in orthogonal matching pursuit[C]. TENCON 2012 IEEE Region 10 Conference, Cebu, Philippines, 2012: 1–5.
|
[28] |
LIU Jing, HUANG Kaiyu, and YAO Xianghua. Common-innovation subspace pursuit for distributed compressed sensing in wireless sensor networks[J]. IEEE Sensors Journal, 2019, 19(3): 1091–1103. doi: 10.1109/JSEN.2018.2881056
|
[29] |
CHATTERJEE S, SUNDMAN D, and SKOGLUND M. Look ahead orthogonal matching pursuit[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011: 4024–4027.
|
[30] |
MURALIKRISHNNA G S, AMBAT S K, and HARI K V S. Batch look ahead orthogonal matching pursuit[C]. 2018 Twenty Fourth National Conference on Communications (NCC), Hyderabad, India, 2018: 1–5.
|
[31] |
SWAMY P B, AMBAT S K, CHATTERJEE S, et al. Reduced look ahead orthogonal matching pursuit[C]. 2014 Twentieth National Conference on Communications (NCC), Kanpur, India, 2014: 1–6.
|
[32] |
AMBAT S K, CHATTERJEE S, and HARI K V S. Adaptive selection of search space in look ahead orthogonal matching pursuit[C]. 2012 National Conference on Communications (NCC), Kharagpur, India, 2012: 1–5.
|
[33] |
KOPPARTHI V R, PEESAPATI R, and SABAT S L. System on chip implementation of low complex orthogonal matching pursuit algorithm on FPGA[C]. 2020 6th International Conference on Signal Processing and Communication (ICSC), Noida, India, 2020: 178–184.
|
[34] |
CAI T T and WANG Lie. Orthogonal matching pursuit for sparse signal recovery with noise[J]. IEEE Transactions on Information Theory, 2011, 57(7): 4680–4688. doi: 10.1109/TIT.2011.2146090
|
[35] |
WANG Zhizhan, LI Yuzhou, WANG Chengcai, et al. A-OMP: An adaptive OMP algorithm for underwater acoustic OFDM channel estimation[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1761–1765. doi: 10.1109/LWC.2021.3079225
|
[36] |
ZHANG Yi, VENKATESAN R, DOBRE O A, et al. An adaptive matching pursuit algorithm for sparse channel estimation[C]. 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, USA, 2015: 626–630.
|
[37] |
HU Yunfeng and ZHAO Liquan. A fuzzy selection compressive sampling matching pursuit algorithm for its practical application[J]. IEEE Access, 2019, 7: 144101–144124. doi: 10.1109/ACCESS.2019.2941725
|
[38] |
MOURAD N, SHARKAS M, and ELSHERBENY M M. Orthogonal matching pursuit with correction[C]. 2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA), Melaka, Malaysia, 2016: 247–252.
|
[39] |
ZHAO Juan and BAI Xia. Adaptive matching pursuit method based on auxiliary residual for sparse signal recovery[C]. 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Lanzhou, China, 2019: 774–778.
|
[40] |
HUANG Honglin and MAKUR A. Backtracking-based matching pursuit method for sparse signal reconstruction[J]. IEEE Signal Processing Letters, 2011, 18(7): 391–394. doi: 10.1109/LSP.2011.2147313
|
[41] |
ZENG Chunyan, MA Lihong, DU Minghui, et al. Regularized sequential selection and backtracking removal for CS atom matching[C]. 2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP), Banff, Canada, 2012: 209–214,
|
[42] |
GAO Guangyong, ZHOU Caixue, CUI Zongmin, et al. Improved sparsity adaptive matching pursuit algorithm[C]. 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2017: 1761–1766.
|
[43] |
ZHENG Baifu, ZENG Cao, LI Shidong, et al. Joint sparse recovery for signals of spark-level sparsity and MMV tail- $ \ell _{2, 1}$ minimization[J]. IEEE Signal Processing Letters, 2021, 28: 1130–1134. doi: 10.1109/LSP.2021.3084517
|