高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间隙波导技术及其空间应用

陈翔 孙冬全 崔万照

陈翔, 孙冬全, 崔万照. 间隙波导技术及其空间应用[J]. 电子与信息学报, 2023, 45(1): 168-180. doi: 10.11999/JEIT211291
引用本文: 陈翔, 孙冬全, 崔万照. 间隙波导技术及其空间应用[J]. 电子与信息学报, 2023, 45(1): 168-180. doi: 10.11999/JEIT211291
CHEN Xiang, SUN Dongquan, CUI Wanzhao. Gap Waveguide Technology and its Space Applications[J]. Journal of Electronics & Information Technology, 2023, 45(1): 168-180. doi: 10.11999/JEIT211291
Citation: CHEN Xiang, SUN Dongquan, CUI Wanzhao. Gap Waveguide Technology and its Space Applications[J]. Journal of Electronics & Information Technology, 2023, 45(1): 168-180. doi: 10.11999/JEIT211291

间隙波导技术及其空间应用

doi: 10.11999/JEIT211291
基金项目: 国家自然科学基金(61901359, 61901320)
详细信息
    作者简介:

    陈翔:男,高级工程师,博士,研究方向为航天器微波毫米波技术

    孙冬全:男,副教授,博士,研究方向为微波毫米波电路、天线理论及技术

    崔万照:男,研究员,博士,研究方向为航天器微波技术

    通讯作者:

    孙冬全 dqsun87@163.com

  • 中图分类号: TN81

Gap Waveguide Technology and its Space Applications

Funds: The National Natural Science Foundation of China (61901359, 61901320)
  • 摘要: 间隙波导(GW)是一种基于非接触电磁带隙(EBG)结构的新型人工电磁(EM)材料,其独特的非接触结构和宽带电磁屏蔽特性在构建新型电磁传输线及屏蔽结构方面显示出极大的优势和灵活性,为微波毫米波部件、电路及天线等领域带来了新的研究视角和实现途径,近年来引起了广泛关注。该文首先简要介绍了间隙波导概念和原理,分析了其技术优势;进一步,根据不同的研究及应用领域分类,全方位地归纳总结了间隙波导技术相关的国内外研究进展情况;最后,结合空间技术背景和发展需求,探讨了间隙波导在空间微波毫米波技术中的应用前景,提出了基于间隙波导技术的非接触式无源互调干扰控制方法及堆叠集成毫米波电路系统两个重要的应用方向。该文工作可为间隙波导技术相关研究和应用提供一定的借鉴与参考。
  • 图  1  间隙波导理论和实际模型

    图  2  典型的间隙波导传输线

    图  3  近年来所提出的几种重要的新型间隙波导非接触EBG结构

    图  4  基于间隙波导技术的新型毫米波传输线

    图  5  基于间隙波导的非接触法兰及扩展应用

    图  6  基于间隙波导技术的新型无源器件

    图  7  基于脊间隙波导传输线的无基片功率放大器

    图  8  间隙波导阵列天线

    图  9  S频段折叠小型化非接触式低PIM法兰及PIM实测结果

    图  10  基于间隙波导技术的堆叠式毫米波电路系统

    表  1  间隙波导国内外研究领域分类

    研究领域细节分类
    非接触EBG结构理论分析;新型非接触EBG;其他
    GW传输线经典GW传输线及应用;新型GW传输线及应用;过渡、互联方法
    GW的微波毫米波
    技术应用
    无源器件:非接触法兰、滤波器、耦合器、移相器、旋转关节等;有源电路:无基片有源电路;
    天线:缝隙阵列天线、GW喇叭天线、其他新型天线等;
    其他:电路封装、快速测试、3D打印、先进制造等
    下载: 导出CSV
  • [1] 徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363

    XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics &Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363
    [2] KILDAL P S, ALFONSO E, VALERO-NOGUEIRA A, et al. Local metamaterial-based waveguides in gaps between parallel metal plates[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 84–87. doi: 10.1109/LAWP.2008.2011147
    [3] MOROZOV G V and SPRUNG D W L. Floquet-Bloch waves in one-dimensional photonic crystals[J]. Europhysics Letters, 2011, 96(5): 54005. doi: 10.1209/0295-5075/96/54005
    [4] BERENGUER A, FUSCO V, ZELENCHUK D E, et al. Propagation characteristics of groove gap waveguide below and above cutoff[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(1): 27–36. doi: 10.1109/TMTT.2015.2504501
    [5] KILDAL P S, ZAMAN A U, RAJO-IGLESIAS E, et al. Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression[J]. IET Microwaves, Antennas & Propagation, 2011, 5(3): 262–270. doi: 10.1049/iet-map.2010.0089
    [6] RAZA H, YANG Jian, KILDAL P S, et al. Microstrip-ridge gap waveguide–study of losses, bends, and transition to WR-15[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(9): 1943–1952. doi: 10.1109/TMTT.2014.2327199
    [7] BRAZÁLEZ A A, RAJO-IGLESIAS E, VÁZQUEZ-ROY J L, et al. Design and validation of microstrip gap waveguides and their transitions to rectangular waveguide, for millimeter-wave applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(12): 4035–4050. doi: 10.1109/TMTT.2015.2495141
    [8] RAZA H, YANG Jian, KILDAL P S, et al. Resemblance between gap waveguides and hollow waveguides[J]. IET Microwaves, Antennas & Propagation, 2013, 7(15): 1221–1227. doi: 10.1049/iet-map.2013.0178
    [9] NASR M A and KISHK A A. Vertical coaxial-to-ridge waveguide transitions for ridge and ridge gap waveguides with 4: 1 bandwidth[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(1): 86–93. doi: 10.1109/TMTT.2018.2873312
    [10] BIRGERMAJER S, JANKOVIĆ N, RADONIĆ V, et al. Microstrip-ridge gap waveguide filter based on cavity resonators with mushroom inclusions[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 136–146. doi: 10.1109/TMTT.2017.2750149
    [11] SHI Yongrong, ZHANG Junzhi, ZENG Sheng, et al. Novel W-band millimeter-wave transition from microstrip line to groove gap waveguide for MMIC integration and antenna application[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 3172–3176. doi: 10.1109/TAP.2018.2819902
    [12] PENG Songtao, PU Youlei, WU Zewei, et al. A broadband transition from ridge gap waveguide to microstrip using suspended line coupling[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(3): 253–256. doi: 10.1109/LMWC.2020.3040651
    [13] SHI Yongrong, FENG Wenjie, WANG Hao, et al. Novel W-band LTCC transition from microstrip line to ridge gap waveguide and its application in 77/79 GHz antenna array[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 915–924. doi: 10.1109/TAP.2018.2882625
    [14] MORALES-HERNÁNDEZ A, FERRANDO-ROCHER M, SÁNCHEZ-SORIANO M Á, et al. Design strategy and considerations to improve corona discharge breakdown in groove gap waveguides[C]. IEEE 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 2021: 1–5.
    [15] FAN Fangfang, YANG Jian, VASSILEV V, et al. Bandwidth investigation on half-height pin in ridge gap waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 100–108. doi: 10.1109/TMTT.2017.2732983
    [16] EBRAHIMPOURI M, RAJO-IGLESIAS E, SIPUS Z, et al. Cost-effective gap waveguide technology based on glide-symmetric holey EBG structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 927–934. doi: 10.1109/TMTT.2017.2764091
    [17] SUN Dongquan, CHEN Xiang, DENG Jingya, et al. Gap waveguide with interdigital-pin bed of nails for high-frequency applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(7): 2640–2648. doi: 10.1109/TMTT.2019.2914907
    [18] SUN Dongquan, CHEN Xiang, and GUO Lixin. Compact corrugated plate for double-sided contactless waveguide flange[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(2): 129–132. doi: 10.1109/LMWC.2020.3042279
    [19] SUN Dongquan, CHEN Xiang, GUO Lixin, et al. Hard–soft groove gap waveguide based on perpendicularly stacked corrugated metal plates[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(8): 3684–3692. doi: 10.1109/TMTT.2021.3086497
    [20] PENG Songtao, PU Youlei, WU Zewei, et al. Embedded bed of nails with robustness suitable for broadband gap waveguide technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(12): 5317–5326. doi: 10.1109/TMTT.2021.3116178
    [21] BAYAT-MAKOU N and KISHK A A. Contactless air-filled substrate integrated waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(6): 2928–2935. doi: 10.1109/TMTT.2018.2818137
    [22] ZHAO Xiaofei, DENG Jingya, YIN Jiayuan, et al. Novel suspended-line gap waveguide packaged with stacked-mushroom EBG structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(5): 2447–2457. doi: 10.1109/TMTT.2021.3068260
    [23] PUCCI E and KILDAL P S. Contactless non-leaking waveguide flange realized by bed of nails for millimeter wave applications[C]. IEEE 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012: 3533–3536.
    [24] 孙冬全. 毫米波间隙波导技术及FMCW反射功率对消系统应用研究[D]. [博士论文], 东南大学, 2017.

    SUN Dongquan. Research on millimeter-wave gap waveguide technology and FMCW reflected power cancelation systems[D]. [Ph. D. dissertation], Southeast University, 2017.
    [25] RAHIMINEJAD S, PUCCI E, VASSILEV V, et al. Polymer gap adapter for contactless, robust, and fast measurements at 220–325 GHz[J]. Journal of Microelectromechanical Systems, 2016, 25(1): 160–169. doi: 10.1109/JMEMS.2015.2500277
    [26] SUN Dongquan, CHEN Zhenhua, YAO Changfei, et al. Flexible rectangular waveguide based on cylindrical contactless flange[J]. Electronics Letters, 2016, 52(25): 2042–2044. doi: 10.1049/el.2016.3536
    [27] SUN Dongquan and XU Jinping. Real time rotatable waveguide twist using contactless stacked air-gapped waveguides[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(3): 215–217. doi: 10.1109/LMWC.2017.2661881
    [28] AHMADI B and BANAI A. Direct coupled resonator filters realized by gap waveguide technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(10): 3445–3452. doi: 10.1109/TMTT.2015.2457916
    [29] XIU Tao, YAO Yuan, JIANG Hang, et al. Design of a compact and low-loss E-band filter based on multilayer groove gap waveguide[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(11): 1211–1214. doi: 10.1109/LMWC.2021.3111955
    [30] SUN Dongquan and XU Jinping. A novel iris waveguide bandpass filter using air gapped waveguide technology[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(7): 475–477. doi: 10.1109/LMWC.2016.2574822
    [31] REZAEE M and ZAMAN A U. Groove gap waveguide filter based on horizontally polarized resonators for V-band applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(7): 2601–2609. doi: 10.1109/TMTT.2020.2986111
    [32] SUN Dongquan and XU Jinping. Rectangular waveguide coupler with adjustable coupling coefficient using gap waveguide technology[J]. Electronics Letters, 2017, 53(3): 167–169. doi: 10.1049/el.2016.4039
    [33] PALOMARES-CABALLERO Á, ALEX-AMOR A, ESCOBEDO P, et al. Low-loss reconfigurable phase shifter in gap-waveguide technology for mm-wave applications[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(12): 3058–3062. doi: 10.1109/TCSII.2020.3000058
    [34] SÁNCHEZ-ESCUDEROS D, HERRANZ-HERRUZO J I, FERRANDO-ROCHER M, et al. True-time-delay mechanical phase shifter in gap waveguide technology for slotted waveguide arrays in Ka-band[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2727–2740. doi: 10.1109/TAP.2020.3030993
    [35] 陈翔, 孙冬全, 李小军, 等. U型超宽带非接触式波导旋转关节、控制系统、方法及应用[P]. 中国专利, 111934062A, 2020.

    CHEN Xiang, SUN Dongquan, LI Xiaojun, et al. U-shaped ultra-wideband non-contact waveguide rotary joint, control system, method and application[P]. China Patent, 111934062A, 2020.
    [36] FARAHBAKHSH A. Wideband rotary joint based on gap waveguide technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(10): 4385–4391. doi: 10.1109/TMTT.2021.3090988
    [37] HORESTANI A K, SHATERIAN Z, and MROZOWSKI M. High dynamic range microwave displacement and rotation sensors based on the phase of transmission in groove gap waveguide technology[J]. IEEE Sensors Journal, 2022, 22(1): 182–189. doi: 10.1109/JSEN.2021.3130658
    [38] WANG Minxing, WU Zewei, LIAO Xiaoyi, et al. Exciting circular TM11 mode using symmetric probes based on ridge gap waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(1): 334–342. doi: 10.1109/TMTT.2021.3121324
    [39] TAMAYO-DOMÍNGUEZ A, FERNÁNDEZ-GONZÁLEZ J M, and SIERRA-CASTAÑER M. 3-D-printed modified butler matrix based on gap waveguide at W-band for monopulse radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(3): 926–938. doi: 10.1109/TMTT.2019.2953164
    [40] SHI Yongrong, ZHANG Junzhi, ZHOU Ming, et al. Miniaturized W-band gap waveguide bandpass filter using the MEMS technique for both waveguide and surface mounted packaging[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2019, 66(6): 938–942. doi: 10.1109/TCSII.2018.2873236
    [41] FARJANA S, GHADERI M, ZAMAN A U, et al. Low-loss gap waveguide transmission line and transitions at 220–320 GHz using dry film micromachining[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(11): 2012–2021. doi: 10.1109/TCPMT.2021.3111137
    [42] AHMADI B and BANAI A. Substrateless amplifier module realized by ridge gap waveguide technology for millimeter-wave applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(11): 3623–3630. doi: 10.1109/TMTT.2016.2607177
    [43] FERRANDO-ROCHER M, HERRANZ-HERRUZO J I, VALERO-NOGUEIRA A, et al. 8×8 Ka-band dual-polarized array antenna based on gap waveguide technology[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(7): 4579–4588. doi: 10.1109/TAP.2019.2908109
    [44] SHI Yongrong, FENG Wenjie, and CAO Baolin. W-band gap waveguide antenna array: Passive/active component gap waveguide transition interface for system integration[J]. IEEE Antennas and Propagation Magazine, 2021, 63(2): 40–49. doi: 10.1109/MAP.2019.2943306
    [45] LIU Ying, YUE Zhenzhen, JIA Yongtao, et al. Dual-band dual-circularly polarized antenna array with printed ridge gap waveguide[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 5118–5123. doi: 10.1109/TAP.2020.3048504
    [46] VILENSKIY A R, MAKURIN M N, LEE C, et al. Reconfigurable transmitarray with near-field coupling to gap waveguide array antenna for efficient 2-D beam steering[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 7854–7865. doi: 10.1109/TAP.2020.2998904
    [47] TAMAYO-DOMÍNGUEZ A, FERNÁNDEZ-GONZÁLEZ J M, and SIERRA-CASTAÑER M. Monopulse radial line slot array antenna fed by a 3-D-printed cavity-ended modified butler matrix based on gap waveguide at 94 GHz[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 4558–4568. doi: 10.1109/TAP.2021.3060045
    [48] LIU Jinlin, YANG Fei, FAN Kuikui, et al. Unequal power divider based on inverted microstrip gap waveguide and its application for low sidelobe slot array antenna at 39 GHz[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(12): 8415–8425. doi: 10.1109/TAP.2021.3096981
    [49] QUAN Yu, WANG Hao, TAO Shifei, et al. A double-layer multibeam antenna with 45° linear polarization based on gap waveguide technology[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 56–66. doi: 10.1109/TAP.2021.3090507
    [50] SUN Dongquan and XU Jinping. Compact phase corrected H-plane horn antenna using slow-wave structures[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1032–1035. doi: 10.1109/LAWP.2016.2618843
    [51] MOHAMMADPOUR M, MOHAJERI F, and RAZAVI S A. A new wide band and compact H-plane horn antenna based on groove gap waveguide technology[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 221–228. doi: 10.1109/TAP.2021.3111342
    [52] YUAN Wei, CHEN Jianfeng, ZHANG Cheng, et al. Glide-symmetric lens antenna in gap waveguide technology[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 2612–2620. doi: 10.1109/TAP.2019.2955919
    [53] BRAZALEZ A A, ZAMAN A U, and KILDAL P S. Improved microstrip filters using PMC packaging by lid of nails[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(7): 1075–1084. doi: 10.1109/TCPMT.2012.2190931
    [54] ASHRAF N, SEBAK A R, and KISHK A A. PMC packaged single-substrate 4 × 4 butler matrix and double-ridge gap waveguide horn antenna array for multibeam applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 248–261. doi: 10.1109/TMTT.2020.3022092
    [55] CHEN Xiang, SUN Dongquan, CUI Wanzhao, et al. A folded contactless waveguide flange for low passive-intermodulation applications[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(10): 864–866. doi: 10.1109/LMWC.2018.2865506
    [56] JIANG Xun, JIA Fangxiu, SHI Yongrong, et al. Ridge gap waveguide layer transition for compact 3-D waveguide packaging application[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(10): 2136–2139. doi: 10.1109/TCPMT.2019.2937436
    [57] WANG Lin, DING Dazhi, CHEN Rushan, et al. Transient analysis of high-power microwave air breakdown under external DC magnetic field[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(6): 4894–4903. doi: 10.1109/TAP.2020.2969894
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  3298
  • HTML全文浏览量:  2289
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2022-04-04
  • 网络出版日期:  2022-04-12
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回