高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海非高斯噪声下基于变分贝叶斯推断的波达角估计

冯晓 周明章 张学波 叶焜 王俊峰 孙海信

冯晓, 周明章, 张学波, 叶焜, 王俊峰, 孙海信. 浅海非高斯噪声下基于变分贝叶斯推断的波达角估计[J]. 电子与信息学报, 2022, 44(6): 1887-1896. doi: 10.11999/JEIT211284
引用本文: 冯晓, 周明章, 张学波, 叶焜, 王俊峰, 孙海信. 浅海非高斯噪声下基于变分贝叶斯推断的波达角估计[J]. 电子与信息学报, 2022, 44(6): 1887-1896. doi: 10.11999/JEIT211284
FENG Xiao, ZHOU Mingzhang, ZHANG Xuebo, YE Kun, WANG Junfeng, SUN Haixin. Variational Bayesian Inference Based Direction Of Arrival Estimation in Presence of Shallow Water Non-Gaussian Noise[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1887-1896. doi: 10.11999/JEIT211284
Citation: FENG Xiao, ZHOU Mingzhang, ZHANG Xuebo, YE Kun, WANG Junfeng, SUN Haixin. Variational Bayesian Inference Based Direction Of Arrival Estimation in Presence of Shallow Water Non-Gaussian Noise[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1887-1896. doi: 10.11999/JEIT211284

浅海非高斯噪声下基于变分贝叶斯推断的波达角估计

doi: 10.11999/JEIT211284
基金项目: 国家自然科学基金(61971362)
详细信息
    作者简介:

    冯晓:女,1987年生,博士生,研究方向为水声阵列信号处理

    周明章:男,1995年生,博士生,研究方向为水声通信

    张学波:男,1986年生,副教授,研究方向为水声阵列信号处理

    叶焜:男,1996年生,博士生,研究方向为水声阵列信号处理

    王俊峰:男,1979年生,助理教授,研究方向为水声通信

    孙海信:男,1977年生,教授,研究方向为水声通信与信号处理

    通讯作者:

    张学波 xuebo_zhang@sina.cn

  • 中图分类号: TN929.3; TN911.7

Variational Bayesian Inference Based Direction Of Arrival Estimation in Presence of Shallow Water Non-Gaussian Noise

Funds: The National Natural Science Foundation of China (61971362)
  • 摘要: 传统基于高斯统计特性的波达角(DOA)估计方法在高斯背景噪声中可以获得较好的估计性能,然而受脉冲噪声影响的浅海环境噪声不再服从高斯分布,若直接利用传统波达角估计方法会引入较大误差。为提升非高斯噪声环境下的波达角估计性能,该文提出一种浅海非高斯噪声下的基于变分贝叶斯推断的波达角估计方法。首先利用信号与脉冲噪声的稀疏性构建多测量向量稀疏信号恢复(SSR)模型;其次,考虑信号的共稀疏特性与脉冲噪声的独立稀疏性,构建层次化贝叶斯估计框架;然后利用变分贝叶斯推断估计信号与噪声的后验概率估计。稀疏信号模型中考虑离网格误差,利用根稀疏贝叶斯估计实现离网格误差修正,解决离网格误差引起的基失配问题;最后通过迭代更新获得较为精确的波达角估计,同时消除脉冲噪声的影响。仿真结果表明:所提方法在非高斯噪声环境下具有较好的波达角估计性能,同时对于脉冲噪声具有较强的抗干扰特性。
  • 图  1  不同噪声下的空间谱估计

    图  2  不同GSNR下的DOA估计性能比较

    图  3  不同SNR下的DOA估计性能比较

    图  4  浅海噪声样本示例

    图  5  浅海噪声下的仿真DOA估计RMSE

    表  1  浅海噪声参数拟合

    噪声模型参数123456
    ${{{\rm{S}}\alpha {\rm{S}}} }$噪声$ \alpha $1.34011.43691.37671.51341.14191.6236
    $ \chi $0.02240.04550.03080.20850.0538-0.0021
    $ \gamma $0.88380.93490.95430.86371.19590.6863
    $ \psi $0.04780.05670.03760.11970.1803-0.0253
    GMM噪声$ \mu $0.08280.07350.08380.09620.14300.0632
    $ \sigma _1^2 $1.75911.87851.96611.48302.94811.0192
    $ \kappa $13291.276.7835.691.32145
    下载: 导出CSV
  • [1] WU Wenqian, GAO Xiqi, SUN Chen, et al. Shallow underwater acoustic massive MIMO communications[J]. IEEE Transactions on Signal Processing, 2021, 69: 1124–1139. doi: 10.1109/TSP.2021.3050037
    [2] CHEN Wen, ZHANG Wen, WU Yanqun, et al. Joint algorithm based on interference suppression and Kalman filter for bearing-only weak target robust tracking[J]. IEEE Access, 2019, 7: 131653–131662. doi: 10.1109/ACCESS.2019.2940956
    [3] ZHANG Xuebo, WU Haoran, SUN Haixin, et al. Multireceiver SAS imagery based on monostatic conversion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10835–10853. doi: 10.1109/JSTARS.2021.3121405
    [4] ZHANG Xuebo, YANG Peixuan, TAN Cheng, et al. BP algorithm for the multireceiver SAS[J]. IET Radar, Sonar & Navigation, 2019, 13(5): 830–838. doi: 10.1049/iet-rsn.2018.5468
    [5] ZHANG Xuebo, YANG Peixuan, and DAI Xuntao. Focusing multireceiver SAS data based on the fourth-order legendre expansion[J]. Circuits, Systems, and Signal Processing, 2019, 38(6): 2607–2629. doi: 10.1007/s00034-018-0982-6
    [6] ZHANG Xuebo, YING Wenwei, YANG Peixuan, et al. Parameter estimation of underwater impulsive noise with the Class B model[J]. IET Radar, Sonar & Navigation, 2020, 14(7): 1055–1060. doi: 10.1049/iet-rsn.2019.0477
    [7] ZHANG Xuebo, YING Wenwei, and YANG Bo. Parameter estimation for class a modeled ocean ambient noise[J]. Journal of Engineering and Technological Sciences, 2018, 50(3): 330–345. doi: 10.5614/j.eng.technol.sci.2018.50.3.2
    [8] ZHOU Mingzhang, WANG Junfeng, FENG Xiao, et al. On generative-adversarial-network-based underwater acoustic noise modeling[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9555–9559. doi: 10.1109/TVT.2021.3102302
    [9] MAHMOOD A, CHITRE M, and VISHNU H. Locally optimal inspired detection in snapping shrimp noise[J]. IEEE Journal of Oceanic Engineering, 2017, 42(4): 1049–1062. doi: 10.1109/JOE.2017.2731058
    [10] CHITRE M A, POTTER J R, and ONG S H. Optimal and near-optimal signal detection in snapping shrimp dominated ambient noise[J]. IEEE Journal of Oceanic Engineering, 2006, 31(2): 497–503. doi: 10.1109/JOE.2006.875272
    [11] WANG Shuche, HE Zhiqiang, NIU Kai, et al. New results on joint channel and impulsive noise estimation and tracking in underwater acoustic OFDM systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2601–2612. doi: 10.1109/TWC.2020.2966622
    [12] PELEKANAKIS K and CHITRE M. Adaptive sparse channel estimation under symmetric alpha-stable noise[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 3183–3195. doi: 10.1109/TWC.2014.042314.131432
    [13] TSAKALIDES P and NIKIAS C L. The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments[J]. IEEE Transactions on Signal Processing, 1996, 44(7): 1623–1633. doi: 10.1109/78.510611
    [14] LIU T H and MENDE J M. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1605–1613. doi: 10.1109/78.934131
    [15] ZENG Wenjun, SO H C, and HUANG Lei. p-MUSIC: Robust direction-of-arrival estimator for impulsive noise environments[J]. IEEE Transactions on Signal Processing, 2013, 61(17): 4296–4308. doi: 10.1109/tsp.2013.2263502
    [16] 王汗青, 王平波, 王树宗. 基于SαS分布的水声信号自适应波束形成算法[J]. 船海工程, 2012, 41(4): 165–167. doi: 10.3963/j.issn.1671-7953.2012.04.045

    WANG Hanqing, WANG Pingbo, and WANG Shuzong. Adaptive beam-forming algorithm for underwater acoustic signal based on α-Stable distribution[J]. Ship &Ocean Engineering, 2012, 41(4): 165–167. doi: 10.3963/j.issn.1671-7953.2012.04.045
    [17] ZHA Daifeng and QIU Tianshuang. Underwater sources location in non-Gaussian impulsive noise environments[J]. Digital Signal Processing, 2006, 16(2): 149–163. doi: 10.1016/j.dsp.2005.04.008
    [18] MADADI Z, ANAND G V, and PREMKUMAR A B. 3-D source localization in shallow ocean with non-Gaussian noise using a linear array of acoustic vector sensors[C]. 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), Montreal, Canada, 2012: 1353–1358.
    [19] SHI Yunmei, MAO Xingpeng, QIAN Cheng, et al. Robust relaxation for coherent DOA estimation in impulsive noise[J]. IEEE Signal Processing Letters, 2019, 26(3): 410–414. doi: 10.1109/LSP.2018.2889913
    [20] ZHANG Jiacheng, QIU Tianshuang, and LUAN Shengyang. Robust sparse representation for DOA estimation with unknown mutual coupling under impulsive noise[J]. IEEE Communications Letters, 2020, 24(7): 1455–1458. doi: 10.1109/LCOMM.2020.2983038
    [21] SHI Yunmei, MAO Xingpeng, ZHAO Chunlei, et al. Underdetermined DOA estimation for wideband signals via joint sparse signal reconstruction[J]. IEEE Signal Processing Letters, 2019, 26(10): 1541–1545. doi: 10.1109/LSP.2019.2937381
    [22] GEMBA K L, NANNURU S, and GERSTOFT P. Robust ocean acoustic localization with sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(1): 49–60. doi: 10.1109/JSTSP.2019.2900912
    [23] TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 1: 211–244. doi: 10.1162/15324430152748236
    [24] DAS A. Real-valued sparse Bayesian learning for off-grid direction-of-arrival (DOA) estimation in ocean acoustics[J]. IEEE Journal of Oceanic Engineering, 2021, 46(1): 172–182. doi: 10.1109/JOE.2020.2981102
    [25] DAS A. Deterministic and Bayesian sparse signal processing algorithms for coherent multipath directions-of-arrival (DOAs) estimation[J]. IEEE Journal of Oceanic Engineering, 2019, 44(4): 1150–1164. doi: 10.1109/JOE.2018.2851119
    [26] DAS A and SEJNOWSKI T J. Narrowband and wideband off-grid direction-of-arrival estimation via sparse Bayesian learning[J]. IEEE Journal of Oceanic Engineering, 2018, 43(1): 108–118. doi: 10.1109/JOE.2017.2660278
    [27] DAI Jisheng and SO H C. Sparse Bayesian learning approach for outlier-resistant direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 744–756. doi: 10.1109/TSP.2017.2773420
    [28] TZIKAS D G, LIKAS A C, and GALATSANOS N P. The variational approximation for Bayesian inference[J]. IEEE Signal Processing Magazine, 2008, 25(6): 131–146. doi: 10.1109/msp.2008.929620
    [29] WAN Qian, DUAN Huiping, FANG Jun, et al. Robust Bayesian compressed sensing with outliers[J]. Signal Processing, 2017, 140: 104–109. doi: 10.1016/j.sigpro.2017.05.017
    [30] YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/tsp.2012.2222378
    [31] DAI Jisheng, BAO Xu, XU Weichao, et al. Root sparse Bayesian learning for off-grid DOA estimation[J]. IEEE Signal Processing Letters, 2017, 24(1): 46–50. doi: 10.1109/lsp.2016.2636319
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  809
  • HTML全文浏览量:  423
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-17
  • 修回日期:  2022-02-28
  • 录用日期:  2022-03-03
  • 网络出版日期:  2022-03-07
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回