高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向无线能量传输的三维无人机轨迹设计

胡钰林 文玄 原晓鹏 江昊 张健 程莉莉

胡钰林, 文玄, 原晓鹏, 江昊, 张健, 程莉莉. 面向无线能量传输的三维无人机轨迹设计[J]. 电子与信息学报, 2022, 44(3): 852-859. doi: 10.11999/JEIT211280
引用本文: 胡钰林, 文玄, 原晓鹏, 江昊, 张健, 程莉莉. 面向无线能量传输的三维无人机轨迹设计[J]. 电子与信息学报, 2022, 44(3): 852-859. doi: 10.11999/JEIT211280
HU Yulin, WEN Xuan, YUAN Xiaopeng, JIANG Hao, ZHANG Jian, CHENG Lili. 3D Unmanned Aerial Vehicle Trajectory Design for Wireless Power Transfer[J]. Journal of Electronics & Information Technology, 2022, 44(3): 852-859. doi: 10.11999/JEIT211280
Citation: HU Yulin, WEN Xuan, YUAN Xiaopeng, JIANG Hao, ZHANG Jian, CHENG Lili. 3D Unmanned Aerial Vehicle Trajectory Design for Wireless Power Transfer[J]. Journal of Electronics & Information Technology, 2022, 44(3): 852-859. doi: 10.11999/JEIT211280

面向无线能量传输的三维无人机轨迹设计

doi: 10.11999/JEIT211280
基金项目: 国家自然科学基金(62101389)
详细信息
    作者简介:

    胡钰林:男,1987年生,教授,博士,博士生导师,研究方向为工业物联网、无人机通信、移动边缘计算等

    文玄:男,2000年生,硕士生,研究方向为无人机通信

    原晓鹏:男,1994年生,博士生,研究方向为无人机辅助无线网络、轨迹设计、信息理论和优化技术

    江昊:男,1976年生,教授,博士,博士生导师,研究方向为大数据分析与挖掘、智能网络、智能系统、移动边缘计算

    张健:男,1977年生,教授,博士,博士生导师,研究方向为计算机网络、计算机网络程序设计、分布式系统等

    程莉莉:女,1983年生,副研究员,博士,研究方向为工业机器人

    通讯作者:

    胡钰林 yulin.hu@whu.edu.cn

  • 中图分类号: V279; TM724

3D Unmanned Aerial Vehicle Trajectory Design for Wireless Power Transfer

Funds: The National Natural Science Foundation of China (62101389)
  • 摘要: 在无人机(UAV)辅助的无线网络中,UAV轨迹设计可以有效地提升无线网络系统性能。然而,3维场景下的UAV轨迹设计问题因其高复杂性,目前仍是开放性研究问题,并缺少高性能的求解方案。该文针对具有一般性的无线能量传输(WPT)系统中UAV 3维轨迹设计问题,在凸空间下,基于间续悬飞(SHF)的最优轨迹结构,提出获得高性能3维轨迹的求解方案。
  • 图  1  SHF结构示意图

    图  2  不同飞行空间的UAV 3维轨迹图

    图  3  不同飞行空间的用户最小接收能量图

    图  4  Vmax = 0.8 m/s时不同飞行空间下用户接收能量柱状图

    表  1  3维UAV轨迹设计迭代算法

     初始化:
       由3维旅行商问题求解初始点$\left( { {{\boldsymbol{x}}^{\left( 0 \right)} },{{\boldsymbol{y}}^{\left( 0 \right)} },{{\boldsymbol{z}}^{\left( 0 \right)} },{{\boldsymbol{t}}^{\left( 0 \right)} } } \right)$。
       迭代次数$r = 0$。
       首次最优值对比值${E^{\left( { - 1} \right) * }} = 0$。
       第r次迭代:
     (1) 基于式(悬停和飞行部分)在点$\left( { {{\boldsymbol{x}}^{\left( r \right)} },{{\boldsymbol{y}}^{\left( r \right)} },{{\boldsymbol{z}}^{\left( r \right)} },{{\boldsymbol{t}}^{\left( r \right)} } } \right)$建立近
       似表达式$E_k^{\left( r \right)}\left( {{\boldsymbol{x}},{\boldsymbol{y}},{\boldsymbol{z}},{\boldsymbol{t}}} \right)$;
     (2) 求解凸问题(P3),获得最优点$\left( {{x^{\left( r \right)*}},{y^{\left( r \right)*}},{z^{\left( r \right)*}},{t^{\left( r \right)*}}} \right)$和最
       优值${E^{\left( r \right) * }}$;
     (3) If 满足收敛条件${E}^{\left(r\right)\ast }-{E}^{\left(r-1\right)\ast } < \epsilon$,其中$\epsilon$为极小阈值;
        最优解$ \left( {{x^*},{y^*},{z^*},{t^*}} \right) = \left( {{x^{\left( r \right)*}},{y^{\left( r \right)*}},{z^{\left( r \right)*}},{t^{\left( r \right)*}}} \right),$
       ${E^ * } = {E^{\left( r \right) * }} $;
        结束迭代;
        Else $\left( {{x^{\left( {r + 1} \right)}},{y^{\left( {r + 1} \right)}},{z^{\left( {r + 1} \right)}},{t^{\left( {r + 1} \right)}}} \right) = $
          $ \left( {{x^{\left( r \right)*}},{y^{\left( r \right)*}},{z^{\left( r \right)*}},{t^{\left( r \right)*}}} \right)$;
        $r = r + 1$;
        返回 (1)。
        End
    下载: 导出CSV
  • [1] YAN Hua, CHEN Yunfei, and YANG Shuanghua. UAV-enabled wireless power transfer with base station charging and UAV power consumption[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 12883–12896. doi: 10.1109/TVT.2020.3015246
    [2] 吕增威, 魏振春, 韩江洪, 等. 基于多目标优化的无线传感器网络移动充电及数据收集算法[J]. 电子与信息学报, 2019, 41(8): 1877–1884. doi: 10.11999/JEIT180897

    LÜ Zengwei, WEI Zhenchun, HAN Jianghong, et al. A mobile charging and data collecting algorithm based on multi-objective optimization[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1877–1884. doi: 10.11999/JEIT180897
    [3] LI Hang, XU Jie, ZHANG Rui, et al. A general utility optimization framework for energy-harvesting-based wireless communications[J]. IEEE Communications Magazine, 2015, 53(4): 79–85. doi: 10.1109/MCOM.2015.7081079
    [4] BI Suzhi, HO C K, and ZHANG Rui. Wireless powered communication: Opportunities and challenges[J]. IEEE Communications Magazine, 2015, 53(4): 117–125. doi: 10.1109/MCOM.2015.7081084
    [5] SU Chunxia, YE Fang, WANG Lichun, et al. UAV-assisted wireless charging for energy-constrained IoT devices using dynamic matching[J]. IEEE Internet of Things Journal, 2020, 7(6): 4789–4800. doi: 10.1109/JIOT.2020.2968346
    [6] 黄郑, 王红星, 王成亮, 等. 一种适用于无人机的无线充电系统[J]. 电力电子技术, 2020, 54(9): 51–53,94. doi: 10.3969/j.issn.1000-100X.2020.09.015

    HUANG Zheng, WANG Hongxing, WANG Chengliang, et al. A wireless charging system for unmanned aerial vehicle[J]. Power Electronics, 2020, 54(9): 51–53,94. doi: 10.3969/j.issn.1000-100X.2020.09.015
    [7] ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933
    [8] LAKEW D S, MASOOD A, and CHO S. 3D UAV placement and trajectory optimization in UAV assisted wireless networks[C]. 2020 International Conference on Information Networking, Barcelona, Spain, 2020: 80–82.
    [9] XIE Lifeng, XU Jie, and ZHANG Rui. Throughput maximization for UAV-enabled wireless powered communication networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1690–1703. doi: 10.1109/JIOT.2018.2875446
    [10] XIE Lifeng and XU Jie. Cooperative trajectory design and resource allocation for a Two-UAV two-user wireless powered communication system[C]. 2018 IEEE International Conference on Communication Systems, Chengdu, China, 2018: 7–12.
    [11] KU S, JUNG S, and LEE C. UAV trajectory design based on reinforcement learning for wireless power transfer[C]. The 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications, JeJu, Korea (South), 2019: 1–3.
    [12] XU Jie, ZENG Yong, and ZHANG Rui. UAV-enabled multiuser wireless power transfer: Trajectory design and energy optimization[C]. The 2017 23rd Asia-Pacific Conference on Communications, Perth, Australia, 2017: 1–6.
    [13] XIE Lifeng, CAO Xiaowen, XU Jie, et al. UAV-enabled wireless power transfer: A tutorial overview[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(4): 2042–2064. doi: 10.1109/TGCN.2021.3093718
    [14] HU Yulin, YUAN Xiaopeng, XU Jie, et al. Optimal 1D trajectory design for UAV-enabled multiuser wireless power transfer[J]. IEEE Transactions on Communications, 2019, 67(8): 5674–5688. doi: 10.1109/TCOMM.2019.2911294
    [15] HU Yulin, YUAN Xiaopeng, YANG Tianyu, et al. On the convex properties of wireless power transfer with nonlinear energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 5672–5676. doi: 10.1109/TVT.2020.2980683
    [16] HU Yulin, YUAN Xiaopeng, ZHANG Guohua, et al. Sustainable wireless sensor networks with UAV-enabled wireless power transfer[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 8050–8064. doi: 10.1109/TVT.2021.3090849
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  1143
  • HTML全文浏览量:  618
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-17
  • 修回日期:  2022-01-06
  • 录用日期:  2022-01-12
  • 网络出版日期:  2022-02-01
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回