高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于干扰消除辅助稀疏连接神经网络的大规模MIMO信号检测

申滨 阳建 曾相誌 崔太平

申滨, 阳建, 曾相誌, 崔太平. 基于干扰消除辅助稀疏连接神经网络的大规模MIMO信号检测[J]. 电子与信息学报, 2023, 45(1): 208-217. doi: 10.11999/JEIT211276
引用本文: 申滨, 阳建, 曾相誌, 崔太平. 基于干扰消除辅助稀疏连接神经网络的大规模MIMO信号检测[J]. 电子与信息学报, 2023, 45(1): 208-217. doi: 10.11999/JEIT211276
SHEN Bin, YANG Jian, ZENG Xiangzhi, CUI Taiping. Massive MIMO Signal Detection Based on Interference Cancellation Assisted Sparsely Connected Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(1): 208-217. doi: 10.11999/JEIT211276
Citation: SHEN Bin, YANG Jian, ZENG Xiangzhi, CUI Taiping. Massive MIMO Signal Detection Based on Interference Cancellation Assisted Sparsely Connected Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(1): 208-217. doi: 10.11999/JEIT211276

基于干扰消除辅助稀疏连接神经网络的大规模MIMO信号检测

doi: 10.11999/JEIT211276
基金项目: 国家自然科学基金(62071078)
详细信息
    作者简介:

    申滨:男,教授,研究方向为认知无线电、大规模MIMO信号检测等

    阳建:男,硕士生,研究方向为深度学习、大规模MIMO信号检测

    曾相誌:男,硕士生,研究方向为深度学习、大规模MIMO信号检测

    崔太平:男,讲师,研究方向为认知无线电、车联网

    通讯作者:

    申滨 shenbin@cqupt.edu.cn

  • 中图分类号: TN929.5

Massive MIMO Signal Detection Based on Interference Cancellation Assisted Sparsely Connected Neural Network

Funds: The National Natural Science Foundation of China (62071078)
  • 摘要: 近年来,深度学习成为无线通信领域的关键技术之一。在基于深度学习的一系列MIMO信号检测算法中,大多未充分考虑相邻天线之间的干扰消除问题,无法彻底消除多用户干扰对误码率性能的影响。为此,该文提出一种将深度学习与串行干扰消除(SIC)算法进行结合的方法用于大规模MIMO系统上行链路信号检测。首先,通过优化传统的检测网络(DetNet)及改进ScNet检测算法,该文提出一种基于深度神经网络(DNN)的检测算法,称为ImpScNet。在此基础上,进一步将SIC思想应用到深度学习框架结构设计中,提出一种基于深度学习的大规模MIMO多用户SIC检测算法,称为ImpScNet-SIC。此算法在每个检测层上分为两级,其中,第1级由该文提出的ImpScNet算法提供初始解,再将初始解解调至相应的星座点上作为SIC的输入,由此构成该算法的第2级。此外,在SIC中也使用了ImpScNet算法估计传输符号,以便获得最优性能。仿真结果表明,与已有的各种典型代表算法相比,该文所提ImpScNet-SIC检测算法特别适合大规模MIMO信号检测,具有收敛速度快、收敛稳定及复杂度相对较低的优势,并且在10–3误码率上有至少0.5 dB以上的增益。
  • 图  1  DetNet第$l$层网络结构

    图  2  ScNet的第$l$层网络结构

    图  3  ImpScNet-SIC算法处理框架

    图  4  算法复杂度对比

    图  5  32×32($\eta = 1$)天线配置的链路误码率

    图  6  64×32($\eta = 0.5$)天线配置的链路误码率

    图  7  64×64($\eta = 1$)天线配置的链路误码率

    图  8  128×64($\eta = 0.5$)天线配置的链路误码率

    图  9  128×100($\eta = 0.78$)天线配置链路误码率

    图  10  128×128($\eta = 1$)天线配置的链路误码率

    图  11  SNR = 8 dB时,网络的收敛速度

    表  1  MIMO信号检测算法对比

    算法分类算法名称对比总结
    传统检测算法线性检测算法MF[20], ZF[7], MMSE[8](1) ML性能最优,但复杂度呈指数级上升;(2) SD性能次优,是以牺牲复杂度为代价;(3) 其他算法复杂度较低,但性能有待提高
    非线性检测算法ML[3],干扰消除算法[5, 6],SD[4]
    基于深度学习
    检测算法
    学习类算法DetNet[17], ScNet[19], LISA[13](1) DetNet对天线数量有严格要求,复杂度偏高;(2) ScNet受网络稀疏性影响,仅在大规模才表现出较好的性能;(3) LISA仅适用于常规的MIMO信号检测
    消息传递类算法OAMPNet[14], DNN-dBP[16], DNN-MS[16](1) OAMPNet可调参数少,容易训练,但需假设信道矩阵是酉不变矩阵;(2) DNN-dBP和DNN-MS涉及可调参数较多,复杂度偏高
    可训练类算法TPG[21], TAMP[22](1) TPG主要针对下行链路过载信道;(2) TAMP采用全连接作预处理,可调参数多,复杂度偏高
    下载: 导出CSV
    算法1 ImpScNet-SIC检测算法训练流程
     输入:${\boldsymbol{x}}$, ${\boldsymbol{y}}$, ${\boldsymbol{H}}$, $L$, $\alpha $, $\beta $, $t$
     输出:${{\stackrel\smile{x} } }_l$
     (1) 初始化:${ { {\hat {\boldsymbol x} } }_0}{\text{ = } }{{ {\textit{0}}} }$,$L = 15$,$\alpha = 0.2$,$\beta = 0.5$,$t = 0.1$
     (2) 输入各项参数,训练:$ {\boldsymbol{\theta }} = \left\{ {{{\boldsymbol{w}}_l},{{\boldsymbol{b}}_l}} \right\}_{l = 1}^L $ ,使得损失函数最
       小,得到初步估计值
        ${ {\boldsymbol{c} }_l} = {\left[ { { {\boldsymbol{H} }^{\text{T} } }{\boldsymbol{Hy} },{\text{diag} }({ {\boldsymbol{H} }^{\text{T} } }{\boldsymbol{H} }){ {\hat {\boldsymbol{x} } }_{l - 1} },{ {\hat {\boldsymbol{x} } }_{l - 1} } } \right]^{\text{T} } } $
        ${\psi _t}(x) = - 1 + \dfrac{ {\rho (x + t)} }{ {|t|} } - \dfrac{ {\rho (x - t)} }{ {|t|} }$
         $ { { {{\hat {\boldsymbol x}} } }_l} = {\psi _t}\left( { { {\boldsymbol{w} }_l}{ {\boldsymbol{c} }_l} + { {\boldsymbol{b} }_l} } \right) $
         $ {\hat {\boldsymbol{x} } _l} = \alpha {\hat {\boldsymbol{x} } _{l - 1} } + (1 - \alpha ){\hat {\boldsymbol{x} } _l} $
        $\mathcal{L}({\boldsymbol{x} },\hat {\boldsymbol{x} } ) = \displaystyle\sum\limits_{l = 1}^L {\ln } (l)\left[ { { {\left\| { {\boldsymbol{x} } - { { {\boldsymbol{\hat x} } }_l} } \right\|}^2} + \beta r({ {\hat {\boldsymbol{x} } }_l},{\boldsymbol{x} })} \right]$
     (3) 将得到的初步估计值解调到相应的星座点上
        ${\tilde x_j} = \mathop {\arg \min }\limits_{i \in \{ 1,2, \cdots ,{2^K}\} } |{\hat x_l}(j) - {s_i}|,j = 1,2, \cdots ,2M$
     (4) 再引入SIC,根据信道矩阵${\boldsymbol{H}}$列范数的大小来进行降序排序
        $\mathcal{C} = \arg {{\rm{sort}}} \left( { {\gamma _1},{\gamma _2}, \cdots ,{\gamma _M} } \right)$
         $ {\gamma _m} = \left\| {{{\boldsymbol{h}}_m}} \right\|_2^2,\forall \:m = 1,2, \cdots ,M $
     (5) 消除第$i (i = 1,2, \cdots ,2M)$个用户对下一个接收信号的影响,
       并更新接收信号
        ${ { { {\tilde {\boldsymbol y} } } }_i} = \displaystyle\sum\limits_{k = 1}^i { { {\boldsymbol{h} }_k} } ({x_k} - { {\tilde x}_k}) + \displaystyle\sum\limits_{j = i + 1}^{2M} { { {\boldsymbol{h} }_j} } {x_j}$
        $ {{{{\tilde {\boldsymbol y}}}}_{i + 1}} = {{{\boldsymbol{\tilde y}}}_i} - {{\boldsymbol{h}}_{i + 1}}{{\tilde x}_{i + 1}}\left( {i = 1,2, \cdots ,2M} \right) $
     (6) 得到更新的接收向量$ {{\tilde {\boldsymbol y}}} $、传输向量$ {{\tilde {\boldsymbol x}}} $和信道矩阵${\boldsymbol{H}}$再执行步
       骤(2)
     (7) 重复步骤(3)—步骤(6),直到所有有用信号均被检测出来,
       得到最终的检测信号向量${ { {\stackrel\smile{\boldsymbol{x} } } }_l}$
    下载: 导出CSV

    表  2  训练ImpScNet-SIC时参数设置

    参数名称具体设置
    发射天线数$M$4, 32, 64, 100, 128
    接收天线数$N$4, 32, 64, 128
    层数$L$15,15
    起始学习率${\beta _0}$0.001
    学习衰减率${\beta _t}$0.97
    SNR(dB)范围(4,14)
    批量大小500
    训练网络迭代次数10000
    迭代周期5
    下载: 导出CSV
  • [1] RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: Opportunities and challenges with very large arrays[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40–60. doi: 10.1109/MSP.2011.2178495
    [2] 李国权, 徐永海, 林金朝, 等. 基于深度学习的无线物理层关键技术研究综述[J]. 重庆邮电大学学报:自然科学版, 2020, 32(4): 503–510. doi: 10.3979/j.issn.1673-825X.2020.04.001

    LI Guoquan, XU Yonghai, LIN Jinchao, et al. A survey of wireless physical layer key technology based on deep learning[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2020, 32(4): 503–510. doi: 10.3979/j.issn.1673-825X.2020.04.001
    [3] SUN Yi, ZHENG Le, ZHU Pengcheng, et al. On optimality of local maximum-likelihood detectors in large-scale MIMO channels[J]. IEEE Transactions on Wireless Communications, 2016, 15(10): 7074–7088. doi: 10.1109/TWC.2016.2596721
    [4] MOHAMMADKARIMI M, MEHRABI M, ARDAKANI M, et al. Deep learning-based sphere decoding[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4368–4378. doi: 10.1109/TWC.2019.2924220
    [5] 申滨, 赵书锋, 金纯. 基于迭代并行干扰消除的低复杂度大规模MIMO信号检测算法[J]. 电子与信息学报, 2018, 40(12): 2970–2978. doi: 10.11999/JEIT180111

    SHEN Bin, ZHAO Shufeng, and JIN Chun. Low complexity iterative parallel interference cancellation detection algorithms for massive MIMO systems[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2970–2978. doi: 10.11999/JEIT180111
    [6] 丁子哲, 张贤达. 基于串行干扰消除的V-BLAST检测[J]. 电子学报. 2007, 35(S1): 19–24.

    DING Zizhe and ZHANG Xianda. V-BLAST detection based on successive interference cancellation[J]. Acta Electronica Sinica, 2007, 35(S1): 19–24.
    [7] WANG Gang, WANG Dandan, and LI Daoben. An efficient ZF-SIC detection algorithm in MIMO CDMA system[C]. The 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003, Beijing, China, 2003: 1708–1711.
    [8] LIU T H. Some results for the fast MMSE-SIC detection in spatially multiplexed MIMO systems[J]. IEEE Transactions on Wireless Communications, 2009, 8(11): 5443–5448. doi: 10.1109/TWC.2009.090196
    [9] SEEBÖCK P, WALDSTEIN S M, KLIMSCHA S, et al. Unsupervised identification of disease marker candidates in retinal OCT imaging data[J]. IEEE Transactions on Medical Imaging, 2019, 38(4): 1037–1047. doi: 10.1109/TMI.2018.2877080
    [10] UMA M, SNEHA V, SNEHA G, et al. Formation of SQL from natural language query using NLP[C]. 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), Chennai, India, 2019: 1–5.
    [11] BU Linkai and CHURCH T D. Perceptual speech processing and phonetic feature mapping for robust vowel recognition[J]. IEEE Transactions on Speech and Audio Processing, 2000, 8(2): 105–114. doi: 10.1109/89.824695
    [12] XIA Junjuan, HE Ke, XU Wei, et al. A MIMO detector with deep learning in the presence of correlated interference[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4492–4497. doi: 10.1109/TVT.2020.2972806
    [13] SUN Jianyong, ZHANG Yiqing, XUE Jiang, et al. Learning to search for MIMO detection[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7571–7584. doi: 10.1109/TWC.2020.3012785
    [14] HE Hengtao, WEN Chaokai, JIN Shi, et al. A model-driven deep learning network for MIMO detection[C]. 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, USA, 2018: 584–588.
    [15] LIAO Jieyu, ZHAO Junhui, GAO Feifei, et al. A model-driven deep learning method for massive MIMO detection[J]. IEEE Communications Letters, 2020, 24(8): 1724–1728. doi: 10.1109/LCOMM.2020.2989672
    [16] TAN Xiaosi, XU Weihong, SUN Kai, et al. Improving massive MIMO message passing detectors with deep neural network[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1267–1280. doi: 10.1109/TVT.2019.2960763
    [17] SAMUEL N, DISKIN T, and WIESEL A. Learning to detect[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2554–2564. doi: 10.1109/TSP.2019.2899805
    [18] FENG Yuan, MA Yunsi, LI Zhengdai, et al. Low-complexity factor graph-based iterative detection for RRC-SEFDM signals[C]. 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2018: 1–6.
    [19] GAO Guili, DONG Chao, and NIU Kai. Sparsely connected neural network for massive MIMO detection[C]. 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 2018: 397–402.
    [20] DONG Fangwei, XIAO Yue, XIAO Lixia, et al. MF-SIC detector for massive MIMO with QPSK modulation[C]. 2015 IEEE/CIC International Conference on Communications in China - Workshops (CIC/ICCC), Shenzhen, China, 2015: 137–141.
    [21] TAKABE S, IMANISHI M, WADAYAMA T, et al. Trainable projected gradient detector for massive overloaded MIMO channels: Data-driven tuning approach[J]. IEEE Access, 2019, 7: 93326–93338. doi: 10.1109/access.2019.2927997
    [22] ZHENG Peicong, ZENG Yuan, LIU Zhenrong, et al. Deep learning based trainable approximate message passing for massive MIMO detection[C]. 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6.
    [23] SAMUEL N, DISKIN T, and WIESEL A. deep MIMO detection [C]. The 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, 2017: 1–5.
    [24] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778.
    [25] HE Hengtao, WEN Chaokai, JIN Shi, et al. Model-driven deep learning for MIMO detection[J]. IEEE Transactions on Signal Processing, 2020, 68: 1702–1715. doi: 10.1109/tsp.2020.2976585
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  669
  • HTML全文浏览量:  435
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 修回日期:  2022-03-28
  • 网络出版日期:  2022-04-18
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回