高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贴片电阻焊点内部空洞缺陷自适应检测

蔡念 肖盟 肖盼 周帅 邱宝军 王晗

蔡念, 肖盟, 肖盼, 周帅, 邱宝军, 王晗. 贴片电阻焊点内部空洞缺陷自适应检测[J]. 电子与信息学报, 2022, 44(5): 1617-1624. doi: 10.11999/JEIT211246
引用本文: 蔡念, 肖盟, 肖盼, 周帅, 邱宝军, 王晗. 贴片电阻焊点内部空洞缺陷自适应检测[J]. 电子与信息学报, 2022, 44(5): 1617-1624. doi: 10.11999/JEIT211246
CAI Nian, XIAO Meng, XIAO Pan, ZHOU Shuai, QIU Baojun, WANG Han. Adaptive Inspection for Void Defects Inside Solder Joints of Chip Resistors[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1617-1624. doi: 10.11999/JEIT211246
Citation: CAI Nian, XIAO Meng, XIAO Pan, ZHOU Shuai, QIU Baojun, WANG Han. Adaptive Inspection for Void Defects Inside Solder Joints of Chip Resistors[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1617-1624. doi: 10.11999/JEIT211246

贴片电阻焊点内部空洞缺陷自适应检测

doi: 10.11999/JEIT211246
基金项目: 国家自然科学基金(62171142),广东省自然科学基金(2021A1515011908),惠州市高校科研专项资金项目(2019HZKY003)
详细信息
    作者简介:

    蔡念:男,1976年生,教授,研究方向为机器学习、机器视觉、数字信号处理等

    肖盟:男,1998年生,硕士生,研究方向为机器视觉、缺陷检测、图像分割

    肖盼:女,1992年生,博士生,研究方向为机器视觉、缺陷检测

    周帅:男,1984年生,高级工程师,研究方向为微电子器件可靠性与检测评价

    邱宝军:男,1976年生,高级工程师,研究方向为电子元器件、电子组件可靠性检测、分析和评价以及技术研究

    王晗:男,1980年生,教授,研究方向为微电子加工制造装备,光学精密测量仪器设计、生机电制造工艺

    通讯作者:

    蔡念 cainian@gdut.edu.cn

  • 中图分类号: TP274

Adaptive Inspection for Void Defects Inside Solder Joints of Chip Resistors

Funds: The National Natural Science Foundation of China (62171142), The Natural Science Foundation of Guangdong Province (2021A1515011908), The Research Fund for Colleges and Universities in Huizhou (2019HZKY003)
  • 摘要: 贴片电阻在回流焊过程中,受工艺影响,焊点内部或多或少会存在空洞缺陷,空洞占比率过高会严重降低器件的可靠性。该文融合局部预拟合(LPF)活动轮廓模型和自适应圆形卷积核,提出一种贴片电阻焊点内部空洞缺陷自适应检测方法。首先,根据贴片电阻图像具有明暗两个明显区域的特点,通过求解区域平均灰度差异最大的优化问题将其自适应地分为较暗和较亮两个区域。然后,针对较暗区域中空洞与背景之间对比度低、空洞分布较稀疏、面积偏大等特点,采用局部预拟合活动轮廓模型进行空洞检测;针对较亮区域中空洞与背景之间差异明显、空洞分布密集、面积偏小等特点,提出一种自适应圆形卷积核检测空洞。最后,采用形状因子和平均灰度策略剔除误检测,实现贴片电阻焊点内部空洞精细检测。实验结果表明,该文算法相较于其他检测算法性能有明显的提升,平均Dice系数高达0.8846。
  • 图  1  贴片电阻焊点内部空洞缺陷自适应检测算法框架

    图  2  基于自适应圆形卷积核的空洞缺陷粗检测方法

    图  3  不同算法的空洞缺陷检测视觉效果

    表  1  不同尺寸圆形卷积核的检测性能对比

    9×929×2949×4999×99199×199本文
    Dice系数0.44130.72870.73210.77360.74790.8453
    处理时间(s)0.2040.2180.2240.2290.2530.327
    下载: 导出CSV

    表  2  LPF不同对核的分割Dice系数和消耗时间

    3×35×57×79×911×1113×13
    Dice系数0.85620.88720.88800.89100.89070.8881
    处理时间(s)2.6484.3607.07510.62615.02020.305
    下载: 导出CSV

    表  3  亮、暗区域的消融实验(Dice)

    较亮区域较暗区域
    自适应圆形卷积核0.84530.3976
    LPF0.79510.8637
    下载: 导出CSV

    表  4  不同算法的空洞缺陷检测统计结果

    指标Acc(%)F1Dice
    DRLSE79.100.88330.5630
    RSF+LoG79.100.88330.5965
    LoG92.540.95450.8576
    U-Net88.060.92980.7650
    LPF85.820.91770.8637
    本文95.520.97250.8846
    下载: 导出CSV
  • [1] ILLÉS B, KRAMMER O, and GÉCZY A. Reflow Soldering: Apparatus and Heat Transfer Processes[M]. Amsterdam: Elsevier, 2020: 5–8.
    [2] SAID A F, BENNETT B L, KARAM L J, et al. Automated void detection in solder balls in the presence of vias and other artifacts[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(11): 1890–1901. doi: 10.1109/TCPMT.2011.2182613
    [3] WILD P, LORENZ D, GRÖZINGER T, et al. Effect of voids on thermo-mechanical reliability of chip resistor solder joints: Experiment, modelling and simulation[J]. Microelectronics Reliability, 2018, 85: 163–175. doi: 10.1016/j.microrel.2018.04.014
    [4] BUŠEK D, DUŠEK K, RŮŽIČKA D, et al. Flux effect on void quantity and size in soldered joints[J]. Microelectronics Reliability, 2016, 60: 135–140. doi: 10.1016/j.microrel.2016.03.009
    [5] WANG Yu, WANG Mingquan, and ZHANG Zhijie. Microfocus X-ray printed circuit board inspection system[J]. Optik, 2014, 125(17): 4929–4931. doi: 10.1016/j.ijleo.2014.04.027
    [6] PENG Shaohu and DO NAM H. Void defect detection in ball grid array X-ray images using a new blob filter[J]. Journal of Zhejiang University SCIENCE C, 2012, 13(11): 840–849. doi: 10.1631/jzus.C1200065
    [7] MOURI M, KATO Y, YASUKAWA H, et al. A study of using nonnegative matrix factorization to detect solder-voids from radiographic images of solder[C]. The 2014 IEEE 23rd International Symposium on Industrial Electronics, Istanbul, Turkey, 2014: 1074–1079.
    [8] NUANPRASERT S, BABA S, and SUZUKI T. A simple automated void defect detection for poor contrast x-ray images of BGA[C]. The 3rd International Conference on Industrial Application Engineering, Kitakyushu, Japan, 2015.
    [9] MOORE T D, VANDERSTRAETEN D, and FORSSELL P M. Three-dimensional X-ray laminography as a tool for detection and characterization of BGA package defects[J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(2): 224–229. doi: 10.1109/TCAPT.2002.1010010
    [10] NEELURU V K and AHUJA V. Void region segmentation in ball grid array using u-net approach and synthetic data[J]. arXiv: 1907.04222, 2019.
    [11] AKDENİZ C T, DOKUR Z, and ÖLMEZ T. Detection of BGA solder defects from X-ray images using deep neural network[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2020, 28(4): 2020–2029. doi: 10.3906/elk-1910-135
    [12] DING Keyan, XIAO Linfang, and WENG Guirong. Active contours driven by local pre-fitting energy for fast image segmentation[J]. Pattern Recognition Letters, 2018, 104: 29–36. doi: 10.1016/j.patrec.2018.01.019
    [13] HE Kaiming and SUN Jian. Fast guided filter[J]. arXiv: 1505.00996, 2015.
    [14] LI Chunming, XU Chenyang, GUI Changfeng, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243–3254. doi: 10.1109/TIP.2010.2069690
    [15] DING Keyan, XIAO Linfang, and WENG Guirong. Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation[J]. Signal Processing, 2017, 134: 224–233. doi: 10.1016/j.sigpro.2016.12.021
    [16] GAO Shangbing, YANG Jian, and YAN Yunyang. A novel multiphase active contour model for inhomogeneous image segmentation[J]. Multimedia Tools and Applications, 2014, 72(3): 2321–2337. doi: 10.1007/s11042-013-1553-2
    [17] WANG Lei, CHANG Yan, WANG Hui, et al. An active contour model based on local fitted images for image segmentation[J]. Information Sciences, 2017, 418/419: 61–73. doi: 10.1016/j.ins.2017.06.042
    [18] ZHAO Wencheng, XU Xianze, ZHU Yanyan, et al. Active contour model based on local and global Gaussian fitting energy for medical image segmentation[J]. Optik, 2018, 158: 1160–1169. doi: 10.1016/j.ijleo.2018.01.004
    [19] 罗钧, 杨永松, 侍宝玉. 基于改进的自适应差分演化算法的二维Otsu多阈值图像分割[J]. 电子与信息学报, 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949

    LUO Jun, YANG Yongsong, and SHI Baoyu. Multi-threshold image segmentation of 2D Otsu based on improved adaptive differential evolution algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949
    [20] SHANG Caijie, ZHANG Dong, and YANG Yan. A gradient-based method for multilevel thresholding[J]. Expert Systems with Applications, 2021, 175: 114845. doi: 10.1016/j.eswa.2021.114845
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  1140
  • HTML全文浏览量:  598
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 修回日期:  2022-01-09
  • 录用日期:  2022-01-12
  • 网络出版日期:  2022-02-01
  • 刊出日期:  2022-05-25

目录

    /

    返回文章
    返回