Design of a Hybrid Multi-layer Satellite Backbone Network Architecture
-
摘要: 卫星骨干网络将向宽带与中继融合方向发展,为陆、海、空、天基用户提供全球骨干传输、宽带接入、全域通联等服务。该文针对全域用户通联的新需求,创新采用“卫星骨干网络/全域用户接入”模型,提出一种具有层内、层间星间链路的中高轨混合的多层卫星骨干网络架构(3GEO+3IGSO/24MEO)。对该架构的全域覆盖性计算分析,得出该多层卫星骨干网络能够实现地球表面到地球同步轨道高度(约36000 km)全域100%覆盖,并为全域用户提供多重接入能力。进一步对路径数、最少跳数、最小时延等关键网络性能指标分析比较,说明了该架构中轨卫星与高轨卫星之间存在层间星间链路的必要性。分析结果表明:该架构能够满足全域宽带接入和全球骨干传输的需求。Abstract: The space-based backbone transmission network will develop in the direction of broadband and relay integration, providing services such as global backbone transmission, broadband high-speed access and heterogeneous network interconnection for land, sea, air and space users. According to the service requirements of different users, a multi-layer satellite backbone network architecture for medium and high orbit (3GEO+3IGSO/24MEO) is proposed to use the "Satellite Backbone Network/All-Domain Users Access" model. Through the calculation and analysis of the spatial coverage of the architecture, it is concluded that the multi-layer satellite network can achieve 100% coverage of the whole airspace from the earth's surface to the Geostationary Earth Orbit altitude (about 36000 km), and provide multiple access capabilities for All-Domain users. Furthermore, through the analysis and comparison of the key network performance indicators such as path numbers, minimum hops and delay, the necessity of the existence of inter satellite links between medium orbit satellites and high orbit satellites in the architecture is proved. The analysis results show that the architecture can satisfy the broadband access and backbone transmission needs of all kinds of users in the whole airspace.
-
表 1 各轨道星座参数
轨道类型 卫星数 轨道面 轨道高度(km) 轨道倾角(°) 轨位 平近点角 GEO 3 1 ~36000 0 定点于110°E,11°W,130°W – IGSO 3 1 ~36000 65 升交点经度145°E,25°W,95°W – MEO 24 3 20000 55 – 每个轨道上首颗卫星初始时刻平近点角分别为
0°, 15°, 30°,其余依次增加45°表 2 3种卫星网络的覆盖率(%)
时间 高度 0 km 1000 km 20000 km 36000 km 高轨层 中轨层 多层 高轨层 中轨层 多层 高轨层 中轨层 多层 高轨层 中轨层 多层 6:00 100 100 100 100 100 100 100 100 100 100 100 100 12:00 100 100 100 100 100 100 100 100 100 100 100 100 18:00 100 100 100 100 100 100 100 100 100 100 100 100 24:00 100 100 100 100 100 100 100 100 100 100 100 100 表 3 典型应用场景
场景1 场景2 场景3 场景4 场景5 场景6 场景7 场景8 场景9 场景10 源节点 高轨用户 高轨用户 高轨用户 高轨用户 中轨用户 中轨用户 中轨用户 低轨用户 低轨用户 地面用户 目的节点 高轨用户 中轨用户 低轨用户 地面用户 中轨用户 低轨用户 地面用户 低轨用户 地面用户 地面用户 -
[1] NISHIYAMA H, TADA Y, KATO N, et al. Toward optimized traffic distribution for efficient network capacity utilization in two-layered satellite networks[J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1303–1313. doi: 10.1109/TVT.2012.2227861 [2] 徐炎, 崔司千. 多层卫星网络资源混合优化策略[J]. 无线电工程, 2020, 50(8): 711–716. doi: 10.3969/j.issn.1003-3106.2020.08.018XU Yan and CUI Siqian. A resource combined optimization algorithm for STDMA MAC protocols in multi-layer satellite networks[J]. Radio Engineering, 2020, 50(8): 711–716. doi: 10.3969/j.issn.1003-3106.2020.08.018 [3] BLUMENTHAL S H. Medium earth orbit ka band satellite communications system[C]. 2013 IEEE Military Communications Conference, San Diego, USA, 2013: 273–277. [4] 徐冀, 嵩天, 杨雅婷, 等. 多层卫星网络数据缓存技术研究[J]. 载人航天, 2019, 25(4): 461–467. doi: 10.3969/j.issn.1674-5825.2019.04.007XU Ji, SONG Tian, YANG Yating, et al. Research on caching of multilayered satellite networks[J]. Manned Spaceflight, 2019, 25(4): 461–467. doi: 10.3969/j.issn.1674-5825.2019.04.007 [5] 张泰江, 李勇军, 赵尚弘. 基于GEO/LEO双层卫星网络的路由算法优化设计[J]. 计算机工程, 2020, 46(7): 198–205. doi: 10.19678/j.issn.1000-3428.0055504ZHANG Taijiang, LI Yongjun, and ZHAO Shanghong. Optimization design of routing algorithm based on GEO/LEO double-layer satellite network[J]. Computer Engineering, 2020, 46(7): 198–205. doi: 10.19678/j.issn.1000-3428.0055504 [6] 鲁岩, 许协, 吴明航. 多层卫星网络拓扑结构及路由协议研究[J]. 数字通信世界, 2015(10): 79,87. doi: 10.3969/j.issn.1672-7274.2015.10.069LU Yan, XU Xie, and WU Minghang. Research on multi-layer satellite network topology and routing protocol[J]. Digital Communication World, 2015(10): 79,87. doi: 10.3969/j.issn.1672-7274.2015.10.069 [7] 刘立芳, 吴丹, 郎晓光, 等. GEO/LEO卫星网络的数据传输与抗毁性技术[J]. 西安电子科技大学学报:自然科学版, 2018, 45(1): 1–5,54. doi: 10.3969/j.issn.1001-2400.2018.01.001LIU Lifang, WU Dan, LANG Xiaoguang, et al. Research on data transmission and survivability technology of the GEO/LEO satellite network[J]. Journal of Xidian University:Natural Science, 2018, 45(1): 1–5,54. doi: 10.3969/j.issn.1001-2400.2018.01.001 [8] 李伊陶. 基于LEO-MSS的多层扩展网络场景下的资源分配和切换优化[D]. [博士论文], 中国科学技术大学, 2020.LI Yitao. Resource allocation and handover optimization based on extensible multi-layer LEO-MSS[D]. [Ph. D. dissertation], University of Science and Technology of China, 2020. [9] 张承, 郭薇, 赵艳彬. 多层卫星网络中的管理策略研究[J]. 计算机技术与发展, 2015, 25(7): 1–4,10.ZHANG Cheng, GUO Wei, and ZHAO Yanbin. Research on a management scheme in multilayer satellite networks[J]. Computer Technology and Development, 2015, 25(7): 1–4,10. [10] 孙永林, 李大成, 刘飞. 多业务双层卫星网络的接入与切换策略分析[J]. 无线互联科技, 2020, 17(14): 11–14. doi: 10.3969/j.issn.1672-6944.2020.14.005SUN Yonglin, LI Dacheng, and LIU Fei. Analysis of access and switching strategy of multi-service and double-layer satellite network[J]. Wireless Internet Technology, 2020, 17(14): 11–14. doi: 10.3969/j.issn.1672-6944.2020.14.005 [11] 王延春, 潘成胜. 双层卫星网络的结构设计与性能分析[J]. 计算机工程与设计, 2016, 37(5): 1145–1150. doi: 10.16208/j.issn1000-7024.2016.05.006WANG Yanchun and PAN Chengsheng. Architecture design and performance analysis of double-layer satellite networks[J]. Computer Engineering and Design, 2016, 37(5): 1145–1150. doi: 10.16208/j.issn1000-7024.2016.05.006 [12] 田八林, 袁建平, 岳晓奎. 基于STK的GPS空间覆盖特性仿真分析[J]. 计算机仿真, 2008, 25(6): 46–49. doi: 10.3969/j.issn.1006-9348.2008.06.013TIAN Balin, YUAN Jianping, and YUE Xiaokui. Analysis and simulation of coverage performance of GPS based on STK[J]. Computer Simulation, 2008, 25(6): 46–49. doi: 10.3969/j.issn.1006-9348.2008.06.013 [13] 张倩, 赵砚, 徐梅. 卫星星座的空域覆盖性能计算模型[J]. 飞行器测控学报, 2011, 30(1): 6–10.ZHANG Qian, ZHAO Yan, and XU Mei. Computation model of constellation space coverage performance[J]. Journal of Spacecraft TT &C Technology, 2011, 30(1): 6–10. [14] 郭炎鑫, 郑刚. 多层卫星网络链路中断容忍路由策略设计[J]. 电子与信息学报, 2010, 32(8): 1892–1897. doi: 10.3724/SP.J.1146.2009.01048GUO Yanxin and ZHENG Gang. Design of a link disruption tolerant routing strategy in multilayered satellite network[J]. Journal of Electronics &Information Technology, 2010, 32(8): 1892–1897. doi: 10.3724/SP.J.1146.2009.01048 [15] 张鹏飞, 常建龙, 胡春生. GNSS空间覆盖性仿真分析[J]. 电讯技术, 2018, 58(6): 675–681. doi: 10.3969/j.issn.1001-893x.2018.06.010ZHANG Pengfei, CHANG Jianlong, and HU Chunsheng. Simulation analysis of GNSS space coverage performance[J]. Telecommunication Engineering, 2018, 58(6): 675–681. doi: 10.3969/j.issn.1001-893x.2018.06.010