Research on Resource Allocation Algorithm Based on Service Heterogeneity in V2V Communication in C-V2X
-
摘要: 在支持车与车直接通信(V2V)的蜂窝网络场景下,针对密集环境下复用车与设备(V2I)上行链路的资源分配问题,在V2V的干扰下,利用移动链路的信道状态信息(CSI)的慢衰落统计,联合通信可靠性、功率控制,建立最大化V2I信道容量的优化模型以满足车辆网络服务的异构性的需求。基于此,该文提出一种基于超图理论和遗传算法的资源分配算法。仿真结果表明,该算法在保证V2V通信可靠性的前提下,提高了V2I的信道容量。Abstract: In a cellular network scenario that supports direct Vehicle-to-Vehicle(V2V) communication, the resource allocation problem of the uplink of multiple Vehicle-to-Infrastructure (V2I) in a dense environment is used. Under the interference of V2V, the slow fading statistics of the Channel State Information (CSI) of the mobile link is used, joint communication reliability, power control, an optimization model is established that maximizes the V2I channel capacity to meet the needs of heterogeneous vehicle network services. Based on this, a resource allocation algorithm based on hypergraph theory and genetic algorithm is proposed. The simulation results show that the algorithm improves the channel capacity of V2I under the premise of ensuring the reliability of V2V communication.
-
表 1 模拟参数
参数 数值 载频 2 GHz 带宽 10 MHz 基站天线高度 25 m 基站天线增益 8 dBi 基站噪声 5 dB 公路距离基站的距离 35 m 车载天线高度 1.5 m 车载天线增益 3 dBi 车辆噪声 9 dB 车速 90 km/h V2I链路数量 10 V2V链路数量 30 最大的V2I发射功率 23 dBm 最大的V2V发射功率 23 dBm 噪声功率 –114 dBm 表 2 V2I和V2V链路的信道模型
V2I链路 V2V链路 路径损耗模型 128.1+37.6$ \lg d $ (Line Of Sight, LOS)
WINNER+B1阴影分布 正态对数 正态对数 阴影标准偏差 8 dB 3 dB 快衰落 瑞利衰落 瑞利衰落 -
[1] SINGH A and SINGH B. A study of the IEEE802.11p (WAVE) and LTE-V2V technologies for vehicular communication[C]. 2020 International Conference on Computation, Automation and Knowledge Management, Dubai, United Arab Emirates, 2020: 157–160. [2] HE Wenxue, LI Huafu, ZHI Xiao, et al. Overview of V2V and V2I wireless communication for cooperative vehicle infrastructure systems[C]. The 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference, Chengdu, China, 2019: 127–134. [3] LI Yibing, NIU Chongyu, and YE Fang. Graph-based femtocell enhanced universal resource allocation strategy for LTE-A HetNets[C]. 2017 Progress in Electromagnetics Research Symposium-Fall, Singapore, 2017: 3073–3078. [4] XIAO Shuang, LI Wenzao, YANG Lingling, et al. Graph-coloring based spectrum sharing for V2V communication[C]. 2020 International Conference on UK-China Emerging Technologies, Glasgow, UK, 2020: 1–4. [5] SUN Wanlu, YUAN Di, STRÖM E G, et al. Cluster-based radio resource management for D2D-supported safety-critical V2X communications[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2756–2769. doi: 10.1109/TWC.2015.2509978 [6] LEANH T, TRAN N H, SAAD W, et al. Matching theory for distributed user association and resource allocation in cognitive femtocell networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8413–8428. doi: 10.1109/TVT.2017.2689795 [7] ZENG Bin and YAO Lu. Traffic Patten based resource allocation algorithm for hybrid transmission in LTE networks[C]. The 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference, Chongqing, China, 2017: 81–85. [8] 钱志鸿, 阎双叶, 田春生, 等. LTE-A网络中D2D通信的资源分配算法研究[J]. 电子与信息学报, 2018, 40(10): 2287–2293. doi: 10.11999/JEIT180043QIAN Zhihong, YAN Shuangye, TIAN Chunsheng, et al. Research on resource allocation algorithm for D2D communications underlaying LTE-A networks[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2287–2293. doi: 10.11999/JEIT180043 [9] WEI Qing, SUN Wanlu, BAI Bo, et al. Resource allocation for V2X communications: A local search based 3D matching approach[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. [10] FAN Cong, LI Changle, ZHANG Yao, et al. Resource allocation for platoon oriented vehicular communications: A neural network approach[C]. 2021 IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6. [11] LUO Quyuan, LI Changle, LUAN T H, et al. Optimal utility of vehicles in LTE-V scenario: An immune clone-based spectrum allocation approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5): 1942–1953. doi: 10.1109/TITS.2018.2850311 [12] CECCHINI G, BAZZI A, MASINI B M, et al. Localization-based resource selection schemes for network-controlled LTE-V2V[C]. 2017 International Symposium on Wireless Communication Systems, Bologna, Italy, 2017: 396–401. [13] YANG Jiaxin, PELLETIER B, and CHAMPAGNE B. Enhanced autonomous resource selection for LTE-based V2V communication[C]. 2016 IEEE Vehicular Networking Conference, Columbus, USA, 2016: 1–6. [14] WANG Baoji, ZHANG Rongqing, CHEN Chen, et al. Interference hypergraph-based 3D matching resource allocation protocol for NOMA-V2X networks[C]. 2019 IEEE International Conference on Communications, Shanghai, China, 2019: 1–6. [15] LIANG Le, XIE Shijie, LI G Y, et al. Graph-based resource sharing in vehicular communication[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4579–4592. doi: 10.1109/TWC.2018.2827958 [16] LIANG Le, KIM J, JHA S C, et al. Spectrum and power allocation for vehicular communications with delayed CSI feedback[J]. IEEE Wireless Communications Letters, 2017, 6(4): 458–461. doi: 10.1109/LWC.2017.2702747 [17] 程前. 基于NOMA的车联网V2X功率控制研究[D]. [硕士论文], 北方工业大学, 2021.CHENG Qian. Research on V2X power control of vehicle networking based on NOMA[D]. [Master dissertation], North China University of Technology, 2021.