高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对TweAES的相关调柄多重不可能差分攻击

蒋梓龙 金晨辉

蒋梓龙, 金晨辉. 对TweAES的相关调柄多重不可能差分攻击[J]. 电子与信息学报, 2023, 45(1): 344-352. doi: 10.11999/JEIT211147
引用本文: 蒋梓龙, 金晨辉. 对TweAES的相关调柄多重不可能差分攻击[J]. 电子与信息学报, 2023, 45(1): 344-352. doi: 10.11999/JEIT211147
JIANG Zilong, JIN Chenhui. Related-Tweak Multiple Impossible Differential Attack for TweAES[J]. Journal of Electronics & Information Technology, 2023, 45(1): 344-352. doi: 10.11999/JEIT211147
Citation: JIANG Zilong, JIN Chenhui. Related-Tweak Multiple Impossible Differential Attack for TweAES[J]. Journal of Electronics & Information Technology, 2023, 45(1): 344-352. doi: 10.11999/JEIT211147

对TweAES的相关调柄多重不可能差分攻击

doi: 10.11999/JEIT211147
基金项目: 国家自然科学基金(61772547, 61902428, 61802438)
详细信息
    作者简介:

    蒋梓龙:男,博士生,研究方向为分组密码设计与分析

    金晨辉:男,教授,博士生导师,研究方向为密码学和信息安全

    通讯作者:

    蒋梓龙 dracipher@126.com

  • 中图分类号: TN918.1

Related-Tweak Multiple Impossible Differential Attack for TweAES

Funds: The National Natural Science Foundation of China (61772547, 61902428, 61802438)
  • 摘要: TweAES算法是在NIST轻量级密码标准竞赛中,进入到第2轮的认证加密候选算法。该文提出了对8轮TweAES算法的相关调柄多重不可能差分攻击。首先,利用两类不可能差分区分器,构造了两条攻击路径,每条攻击路径需要攻击16 Byte子密钥。值得注意的是,两条攻击路径有相同的明文结构和14 Byte的公共子密钥,攻击者可以利用同一个明文结构下的明文对,筛选两次错误子密钥,且因为有大量的公共子密钥,可以提高子密钥筛选的效率。此外,利用密钥生成算法的不完全性,有针对性地选择子密钥字节。利用子密钥之间的相关性,提高主密钥恢复效率,从而改进整体攻击方案的结果。与前人的分析结果相比较,该文对8轮TweAES的攻击方案在时间、数据、存储3项复杂度结果上均有所改进。
  • 图  1  TweAES算法的轮函数图(偶数轮)

    图  2  TweAES算法的6轮相关调柄不可能差分区分器

    图  3  TweAES算法的8轮相关调柄不可能差分攻击路径

    表  1  符号说明

    符号意义
    $ P $明文
    $ C $密文
    $x_{i,(p,\cdots,r)}^{{\rm{I/SB/SR/MC/AK/AT}}}$第$ i $轮输入/字节替换/行移位变换/混合变换/轮密钥加/调柄加后的第$(p, \cdots ,r)$ Byte值
    $\Delta x$$x$的差分值
    ${k_{i,(p,\cdots,r)} }$第$ i $轮子密钥${k_i}$的第$(p, \cdots ,r)$ Byte值
    $a{\not \to _{i - {\rm{round}}} }b$差分$ a $经$ i $轮加密后不能得到差分$ b $
    下载: 导出CSV

    表  2  TweAES的8个6轮相关调柄不可能差分区分器

    类别序号区分器的输入差分(具体差分值)区分器的输入差分(截断差分值)
    1(a,a,0,0,0,0,0,0,0,0,0,0,a,a,0,0)(0,0,0,0,0,0,0,0,0,0,0,0,*,0,0,0)
    2(0,0,0,0,0,0,0,0,0,0,0,0,0,*,0,0)
    3(0,0,0,0,0,0,0,0,0,0,0,0,0,0,*,0)
    4(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,*)
    5(*,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    6(0,*,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    7(0,0,*,0,0,0,0,0,0,0,0,0,0,0,0,0)
    8(0,0,0,*,0,0,0,0,0,0,0,0,0,0,0,0)
    注:a为8 bit具体值0x01,*为8 bit任意非零值。主调柄差分值为(1001)。
    下载: 导出CSV

    表  3  AES-128中第9轮子密钥后12 Byte与第1轮子密钥关联

    密钥字节关联字节密钥字节关联字节密钥字节关联字节
    4A16\{0,2,8,10}8A16\{0,1,4}12A16\{0,1,2,4,5,8,10}
    5A16\{1,3,9,11}9A16\{1,2,5}13A16\{1,2,3,5,6,9,11}
    6A16\{0,2,8,10}10A16\{2,3,6}14A16\{0,2,3,6,7,8,10}
    7A16\{1,3,9,11}11A16\{0,3,7}15A16\{0,1,3,4,7,9,11}
    注:密钥字节为第9轮子密钥字节位置,A16代表全部16 Byte,关联字节指与第1轮子密钥字节的关联:如$ {k_{9, (4)}} $与4 Byte子密钥$ {k_{1, (0,2,8,10)}} $无关,只需要知道子密钥$ {k_1} $其余的12 Byte,即可由AES-128的密钥生成算法得到。
    下载: 导出CSV

    表  4  TweAES的攻击结果

    分析方法轮数时间复杂度数据复杂度存储复杂度调柄个数参考文献
    截断差分522625 CP228.582[1]
    积分攻击624525 KP24[1]
    不可能差分621192119 CP278.172[1]
    不可能差分72100299 CP2702[20]
    不可能差分*821272127 CP29624[1]
    不可能差分82124.362124.28 CP2118.812[20]
    不可能差分82120.822122.10 CP21132本文
    CP:选择明文  KP:已知明文  –:复杂度较小忽略不计
    *:由文献[20]修正后,时间复杂度超出穷举攻击,本表列出的为文献[1]中所声称的复杂度。
    下载: 导出CSV
  • [1] CHAKRABORTI A, DATTA N, JHA A, et al. ESTATE: A lightweight and low energy authenticated encryption mode[J]. IACR Transactions on Symmetric Cryptology, 2020, 2020(S1): 350–389. doi: 10.13154/tosc.v2020.iS1.350-389
    [2] DWORKIN M J, BARKER E B, NECHVATAL J R, et al. Advanced encryption standard (AES)[EB/OL]. https: //doi. org/https://doi.org/10.6028/NIST.FIPS.197, 2001.
    [3] BIHAM E, BIRYUKOV A, and SHAMIR A. Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials[C]. Proceedings of International Conference on the Theory and Applications of Cryptographic Techniques, Czech Republic, 1999: 12-23.
    [4] AOKI K, ICHIKAWA T, KANDA M, et al. Camellia: A 128-bit block cipher suitable for multiple platforms — design andanalysis[C]. Proceedings of the 7th Annual International Workshop on Selected Areas in Cryptography, Ontario, Canada, 2000: 39-56.
    [5] TSUNOO Y, TSUJIHARA E, SHIGERI M, et al. Cryptanalysis of CLEFIA using multiple impossible differentials[C]. Proceedings of 2008 International Symposium on Information Theory and Its Applications, Auckland, New Zealand, 2008: 1-6.
    [6] BOURA C, NAYA-PLASENCIA M, and SUDER V. Scrutinizing and improving impossible differential attacks: Applications to CLEFIA, Camellia, LBlock and Simon[C]. Proceedings of the 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, China, 2014: 179-199.
    [7] BOURA C, LALLEMAND V, NAYA-PLASENCIA M, et al. Making the impossible possible[J]. Journal of Cryptology, 2018, 31(1): 101–133. doi: 10.1007/s00145-016-9251-7
    [8] LI Xinran, JIN Chenhui, and FU Fangwei. Improved results of impossible differential cryptanalysis on reduced FOX[J]. The Computer Journal, 2016, 59(4): 541–548. doi: 10.1093/comjnl/bxv073
    [9] LI Xinran, FU Fangwei, and GUANG Xuan. Multiple impossible differential cryptanalysis on reduced FOX[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2015, 98(3): 906–911. doi: 10.1587/transfun.E98.A.906
    [10] SHIRAI T, SHIBUTANI K, AKISHITA T, et al. The 128-bit blockcipher CLEFIA (extended abstract)[C]. Proceedings of the 14th International Workshop on Fast Software Encryption, Luxembourg, 2007: 181-195.
    [11] WU Wenling and ZHANG Lei. LBlock: A lightweight block cipher[C]. Proceedings of the 9th International Conference on Applied Cryptography and Network Security, Nerja, Spain, 2011: 327-344.
    [12] JUNOD P and VAUDENAY S. FOX: A new family of block ciphers[C]. Proceedings of the 11th International Workshop on Selected Areas in Cryptography, Waterloo, Canada, 2004: 114-129.
    [13] BONNETAIN X, NAYA-PLASENCIA M, and SCHROTTENLOHER A. Quantum security analysis of AES[J]. IACR Transactions on Symmetric Cryptology, 2019, 2019(2): 55–93. doi: 10.13154/tosc.v2019.i2.55-93
    [14] GILBERT H. A simplified representation of AES[C]. Proceedings of the 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, China, 2014: 200-222.
    [15] MALA H, DAKHILALIAN M, RIJMEN V, et al. Improved impossible differential cryptanalysis of 7-round AES-128[C]. Proceedings of the 11th International Conference on Cryptology in India, Hyderabad, India, 2010: 282-291.
    [16] SUN Siwei, GERAULT D, LAFOURCADE P, et al. Analysis of AES, SKINNY, and others with constraint programming[J]. IACR Transactions on Symmetric Cryptology, 2017, 2017(1): 281–306. doi: 10.13154/tosc.v2017.i1.281-306
    [17] CUI Ting, JIN Chenhui, ZHANG Bin, et al. Searching all truncated impossible differentials in SPN[J]. IET Information Security, 2017, 11(2): 89–96. doi: 10.1049/iet-ifs.2015.0052
    [18] 张海青. AES型密钥编排方案扩散不完全性的研究及应用[D]. [硕士论文], 战略支援部队信息工程大学, 2019.

    ZHANG Haiqing. Research and application of incomplete diffusion of AES-like key schedule[D]. [Master dissertation], Information Engineering University, 2019.
    [19] LEURENT G and PERNOT C. New representations of the AES key schedule[C]. Proceedings of the 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 2021: 54-84.
    [20] NIU Chao, LI Muzhou, WANG Meiqin, et al. Related-tweak impossible differential cryptanalysis of reduced-round TweAES[C]. Proceedings of the 28th International Conference on Selected Areas in Cryptography, Cham, Switzerland, 2021: 223-245.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  194
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 修回日期:  2022-03-21
  • 网络出版日期:  2022-04-15
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回