高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室内走廊环境毫米波OAM信道特性分析与统计建模

廖希 何昌文 王洋 万杨亮 陈前斌 张杰

廖希, 何昌文, 王洋, 万杨亮, 陈前斌, 张杰. 室内走廊环境毫米波OAM信道特性分析与统计建模[J]. 电子与信息学报, 2022, 44(12): 4194-4203. doi: 10.11999/JEIT211145
引用本文: 廖希, 何昌文, 王洋, 万杨亮, 陈前斌, 张杰. 室内走廊环境毫米波OAM信道特性分析与统计建模[J]. 电子与信息学报, 2022, 44(12): 4194-4203. doi: 10.11999/JEIT211145
LIAO Xi, HE Changwen, WANG Yang, WAN Yangliang, CHEN Qianbin, ZHANG Jie. Characteristic Analysis and Statistical Modeling of Millimeter Wave OAM Channel in Indoor Corridor Environment[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4194-4203. doi: 10.11999/JEIT211145
Citation: LIAO Xi, HE Changwen, WANG Yang, WAN Yangliang, CHEN Qianbin, ZHANG Jie. Characteristic Analysis and Statistical Modeling of Millimeter Wave OAM Channel in Indoor Corridor Environment[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4194-4203. doi: 10.11999/JEIT211145

室内走廊环境毫米波OAM信道特性分析与统计建模

doi: 10.11999/JEIT211145
基金项目: 国家自然科学基金(62171071),重庆市自然科学基金(cstc2021jcyj-msxmX0634)
详细信息
    作者简介:

    廖希:女,副教授,博士,研究方向为无线信道电波传播、信道建模、涡旋电磁波及其应用等

    何昌文:男,硕士生,研究方向为涡旋电磁波及其应用

    王洋:男,副教授,博士,研究方向为天线与电波传播、涡旋电磁波及其应用、雷达信号处理等

    万杨亮:女,工程师,研究方向为电磁涡旋通信、无线通信及通信网络

    通讯作者:

    王洋 wangyang@cqupt.edu.cn

  • 中图分类号: TN929.5

Characteristic Analysis and Statistical Modeling of Millimeter Wave OAM Channel in Indoor Corridor Environment

Funds: The National Natural Science Foundation of China (62171071), The Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0634)
  • 摘要: 针对自由空间传播模型仅能描述自由空间场景下携带轨道角动量(OAM)的涡旋信道传播特性,以及确定性稀疏多径涡旋信道模型严格依赖于传播环境而不能准确刻画真实多径场景下OAM信道传播特性的问题,该文提出毫米波OAM多径信道统计建模方法。在室内走廊环境下构建基于均匀圆形天线阵列(UCA)的OAM辐射传输系统,基于光学射线理论与UCA辐射特性,建立OAM多径信道模型。结果表明,在毫米波频段均匀分布和Nakagami-m分布能够准确地表征室内走廊多径环境下的OAM信道波前相位和幅度,视距(LoS)和非视距(NLoS)传播条件下传播距离较大时信道幅度服从瑞利分布,视距传播条件下传播距离较小时信道幅度服从莱斯分布。
  • 图  1  OAM辐射传输系统

    图  2  走廊环境多径传播模型

    图  3  不同模态的OAM信道波前相位

    图  4  OAM信道相位的统计概率及均匀分布拟合结果

    图  5  OAM信道幅度

    图  6  莱斯因子随传播距离变化图

    图  7  OAM多径信道幅度的统计概率及拟合结果

    图  8  短距离传播LoS条件下的OAM信道幅度统计概率及拟合结果

    表  1  仿真参数设置

    参数数值
    工作频率30 GHz
    发射端UCA的阵元数量8
    发射端UCA的半径0.02 m
    发射端UCA中心距地面的距离1.5 m
    发射端UCA中心距天花板的距离1.5 m
    发射端UCA中心与墙1间的距离1.2 m
    发射端UCA中心与墙2间的距离1.3 m
    地面材料的反射系数0.70
    天花板材料的反射系数0.91
    墙壁材料的反射系数0.75
    下载: 导出CSV

    表  2  最佳拟合参数w与拟合误差

    传播距离(m)模态数直射径3条路径5条路径
    1l=1w12.4612.2412.23
    RMSE0.00500.00460.0047
    l=2w12.3212.4212.59
    RMSE0.00470.00480.0045
    0.4l=1w12.4312.2512.67
    RMSE0.00390.00510.0045
    l=2w12.5612.3812.33
    RMSE0.00420.00420.0044
    下载: 导出CSV

    表  3  Nakagami-m分布拟合参数和拟合误差

    传播
    条件
    参数及误差模态值
    l=0l=1l=2l=3
    LoSm0.8640.8231.0060.904
    c2.6492.2052.2752.448
    $\sigma $7.4263.3932.7542.246
    RMSE0.01030.01370.00940.0061
    NLoSm1.0531.1401.0800.914
    c0.4940.6440.6650.521
    $\sigma $2.8463.0153.2153.319
    RMSE0.00800.01080.00540.0130
    下载: 导出CSV

    表  4  LoS传播条件Nakagami-m分布拟合参数和拟合误差

    拟合参数模态数l
    0123
    m8.7031.8941.7251.534
    c1.8432.2242.1184.396
    $\sigma $12.24715.81119.10222.624
    RMSE0.01050.01260.01390.0107
    下载: 导出CSV
  • [1] AMIN A A and SHIN S Y. Channel capacity analysis of non-orthogonal multiple access with OAM-MIMO system[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1481–1485. doi: 10.1109/LWC.2020.2994355
    [2] ZHANG Yiming and LI Jialin. An orbital angular momentum-based array for in-band full-duplex communications[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 417–421. doi: 10.1109/LAWP.2019.2893035
    [3] WANG Lei, PARK W, YANG Cheng, et al. Wireless communication of radio waves carrying orbital angular momentum (OAM) above an infinite ground plane[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(5): 2257–2264. doi: 10.1109/TEMC.2020.2965656
    [4] CHEN M L N, JIANG Lijun, and SHA W E I. Detection of orbital angular momentum with metasurface at microwave band[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 110–113. doi: 10.1109/LAWP.2017.2777439
    [5] LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Mode hopping for anti-jamming in radio vortex wireless communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7018–7032. doi: 10.1109/TVT.2018.2825539
    [6] CHENG Wenchi, ZHANG Wei, JING Haiyue, et al. Orbital angular momentum for wireless communications[J]. IEEE Wireless Communications, 2019, 26(1): 100–107. doi: 10.1109/MWC.2017.1700370
    [7] XU Jie. Degrees of freedom of OAM-based line-of-sight radio systems[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1996–2008. doi: 10.1109/TAP.2017.2671430
    [8] CHEN Rui, ZHOU Hong, LONG Wenxuan, et al. Spectral and energy efficiency of line-of-sight OAM-MIMO communication systems[J]. China Communications, 2020, 17(9): 119–127. doi: 10.23919/JCC.2020.09.010
    [9] MURATA K, HONMA N, NISHIMORI K, et al. Analog eigenmode transmission for short-range MIMO based on orbital angular momentum[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6687–6702. doi: 10.1109/TAP.2017.2742582
    [10] CAGLIERO A and GAFFOGLIO R. On the spectral efficiency limits of an OAM-based multiplexing scheme[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 900–903. doi: 10.1109/LAWP.2016.2614338
    [11] CUI Jian, WANG Yang, TU Yanli, et al. Propagation analysis of terahertz OAM waves in atmospheric turbulent environment[C]. The 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020: 1–4.
    [12] ZHENG Shilie, DONG Ruofan, ZHANG Zhuofan, et al. Non-line-of-sight channel performance of plane spiral orbital angular momentum MIMO systems[J]. IEEE Access, 2017, 5: 25377–25384. doi: 10.1109/ACCESS.2017.2766078
    [13] ZHU Qibiao and JIANG Tao. Vortex channel modelling for the radio vortex system[J]. China Communications, 2018, 15(4): 121–129. doi: 10.1109/CC.2018.8357690
    [14] 朱启标. 电磁涡旋通信信道建模及容量研究[D]. [博士论文], 华中科技大学, 2019.

    ZHU Qibiao. Study on channel modeling and channel capacity of radio vortex communications[D]. [Ph. D. dissertation], Huazhong University of Science and Technology, 2019.
    [15] ZHANG Zhuofan, ZHENG Shilie, CHEN Yiling, et al. The capacity gain of orbital angular momentum based multiple-input-multiple-output system[J]. Scientific Reports, 2016, 6: 25418. doi: 10.1038/srep25418
    [16] YAN Yan, LI Long, XIE Guodong, et al. Multipath effects in millimetre-wave wireless communication using orbital angular momentum multiplexing[J]. Scientific Reports, 2016, 6: 33482. doi: 10.1038/srep33482
    [17] JIE Wenjun, WANG Yang, HU Tao, et al. Two-ray multipath propagation of MIMO-based OAM radio communications[C]. 2019 International Symposium on Antennas and Propagation (ISAP), Xi'an, China, 2020: 1–3.
    [18] JIE Wenjun, WANG Yang, HU Tao, et al. Propagation model for UCA-based OAM communications in six-ray canyon channels[C]. The 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020: 1–4.
    [19] LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Joint OAM multiplexing and OFDM in sparse multipath environments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3864–3878. doi: 10.1109/TVT.2020.2966787
    [20] YU Kai and OTTERSTEN B. Models for MIMO propagation channels: A review[J]. Wireless Communications and Mobile Computing, 2002, 2(7): 653–666. doi: 10.1002/wcm.78
    [21] YAO Yu, LIANG Xianling, ZHU Maohua, et al. Analysis and experiments on reflection and refraction of orbital angular momentum waves[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2085–2094. doi: 10.1109/TAP.2019.2896760
    [22] GONG Yinghui, WANG R, DENG Yunkai, et al. Generation and transmission of OAM-carrying vortex beams using circular antenna Array[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 2940–2949. doi: 10.1109/TAP.2017.2695526
    [23] THIDÉ B and TAMBURINI F. The physics of angular momentum radio[C]. The 1st URSI Atlantic Radio Science Conference, Gran Canaria, Spain, 2015.
    [24] TIAN Haikuo, LIAO Xi, WANG Yang, et al. Effect level based parameterization method for diffuse scattering models at millimeter-wave frequencies[J]. IEEE Access, 2019, 7: 93286–93293. doi: 10.1109/ACCESS.2019.2927612
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  638
  • HTML全文浏览量:  339
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 修回日期:  2022-03-14
  • 录用日期:  2022-03-22
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-12-10

目录

    /

    返回文章
    返回