高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Arnold变换的量子图像混沌加密方法

石金晶 陈添 陈淑慧 李琴 施荣华

石金晶, 陈添, 陈淑慧, 李琴, 施荣华. 基于Arnold变换的量子图像混沌加密方法[J]. 电子与信息学报, 2022, 44(12): 4284-4293. doi: 10.11999/JEIT211143
引用本文: 石金晶, 陈添, 陈淑慧, 李琴, 施荣华. 基于Arnold变换的量子图像混沌加密方法[J]. 电子与信息学报, 2022, 44(12): 4284-4293. doi: 10.11999/JEIT211143
SHI Jinjing, CHEN Tian, CHEN Shuhui, LI Qin, SHI Ronghua. Quantum Image Chaotic Cryptography Scheme Based on Arnold Transforms[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4284-4293. doi: 10.11999/JEIT211143
Citation: SHI Jinjing, CHEN Tian, CHEN Shuhui, LI Qin, SHI Ronghua. Quantum Image Chaotic Cryptography Scheme Based on Arnold Transforms[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4284-4293. doi: 10.11999/JEIT211143

基于Arnold变换的量子图像混沌加密方法

doi: 10.11999/JEIT211143
基金项目: 国家自然科学基金(61972418, 61872390),湖南省自然科学基金(2020JJ4750),长沙市杰出创新青年培养计划(kq1905058),CCF-百度松果基金(2021PP15002000)
详细信息
    作者简介:

    石金晶:女,副教授,研究方向为量子信息与量子计算

    陈添:女,硕士生,研究方向为量子密码

    陈淑慧:女,硕士,研究方向为量子神经网络、量子密码

    李琴:女,教授,研究方向为量子计算、量子密码、经典密码及信息安全相关研究

    施荣华:男,教授,研究方向为网络安全、量子保密通信、量子密钥分发、量子计算

    通讯作者:

    陈淑慧 shuhuichen1996@163.com

  • 中图分类号: TN918.4; TP309.7

Quantum Image Chaotic Cryptography Scheme Based on Arnold Transforms

Funds: The National Natural Science Foundation of China (61972418, 61872390), The Natural Science Foundation of Hunan Province (2020JJ4750), The Special Foundation for Distinguished Young Scientists of Changsha (kq1905058), CCF-Baidu Open Fund (2021PP15002000)
  • 摘要: 在确保量子图像密码算法安全的基础上,为进一步优化解密图像质量及计算复杂度,该文提出一种基于Arnold变换的量子图像混沌加密方案。方案使用量子细胞神经网络产生的混沌信号来控制量子Arnold变换、量子交换(SWAP)和量子控制非操作(CNOT),然后将这些操作作用于量子明文图像中以获得相应的密文图像。研究结果表明:所提量子灰度图像加密方法具有高安全性、高解密图像质量及低计算复杂度的特点。
  • 图  1  量子细胞神经网络中${P_1}$, ${P_2}$, ${\varphi _1}$之间的轨迹曲线

    图  2  量子细胞神经网络的最大李雅普诺夫指数

    图  3  新型量子图像表示量子线路图

    图  4  量子交换操作

    图  5  图像加解密全过程

    图  6  明文图像Woman, Pepper及相应密文图像

    图  7  明文图像Woman, Pepper及相应密文图像的直方图

    图  8  图像加密前后邻接像素的联系

    图  9  不同密钥情况下解密出的Lena图像

    表  1  明文图像及相应密文图像的熵

    图像名称明文信息熵密文信息熵
    Woman7.16157.9976
    Pepper7.59407.9957
    下载: 导出CSV

    表  2  明文图像及相应密文图像在水平、垂直、对角方向的相关性

    图像名称明文邻接像素相关性密文邻接像素相关性
    HVDHVD
    Woman0.97950.98850.9230–0.00760.00520.0328
    Pepper0.99130.99400.9670–0.0141–0.04810.0379
    下载: 导出CSV
  • [1] GROVER L K. A fast quantum mechanical algorithm for database search[C]. The Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, USA, 1996: 212–219.
    [2] SHI Jinjing, CHEN Shuhui, LU Yuhu, et al. An approach to cryptography based on continuous-variable quantum neural network[J]. Scientific Reports, 2020, 10(1): 2107. doi: 10.1038/s41598-020-58928-1
    [3] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Review, 1999, 41(2): 303–332. doi: 10.1137/s0036144598347011
    [4] 眭晗, 吴文玲. 后量子对称密码的研究现状与发展趋势[J]. 电子与信息学报, 2020, 42(2): 287–294. doi: 10.11999/JEIT190667

    SUI Han and WU Wenling. Research status and development trend of post-quantum symmetric cryptography[J]. Journal of Electronics &Information Technology, 2020, 42(2): 287–294. doi: 10.11999/JEIT190667
    [5] ZHOU Rigui, WU Qian, ZHANG Manqun, et al. Quantum image encryption and decryption algorithms based on quantum image geometric transformations[J]. International Journal of Theoretical Physics, 2013, 52(6): 1802–1817. doi: 10.1007/s10773-012-1274-8
    [6] ZHANG Jinlei, HUANG Zhijie, LI Xiang, et al. Quantum image encryption based on quantum image decomposition[J]. International Journal of Theoretical Physics, 2021, 60(8): 2930–2942. doi: 10.1007/s10773-021-04862-5
    [7] HOU Chengan, LIU Xingbin, and FENG Songyang. Quantum image scrambling algorithm based on discrete Baker map[J]. Modern Physics Letters A, 2020, 35(17): 2050145. doi: 10.1142/S021773232050145X
    [8] ZHOU Nanrun, HU Yiqun, GONG Lihua, et al. Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations[J]. Quantum Information Processing, 2017, 16(6): 164. doi: 10.1007/s11128-017-1612-0
    [9] ZHOU Nanrun, CHEN Weiwei, YAN Xinyu, et al. Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system[J]. Quantum Information Processing, 2018, 17(6): 137. doi: 10.1007/s11128-018-1902-1
    [10] YANG Yuguang, XIA Juan, JIA Xin, et al. Novel image encryption/decryption based on quantum Fourier transform and double phase encoding[J]. Quantum Information Processing, 2013, 12(11): 3477–3493. doi: 10.1007/s11128-013-0612-y
    [11] YE Guodong, JIAO Kaixin, HUANG Xiaoling, et al. An image encryption scheme based on public key cryptosystem and quantum logistic map[J]. Scientific Reports, 2020, 10(1): 21044. doi: 10.1038/s41598-020-78127-2
    [12] ABD EL-LATIF A A, LI Li, WANG Ning, et al. A new approach to chaotic image encryption based on quantum chaotic system, exploiting color spaces[J]. Signal Processing, 2013, 93(11): 2986–3000. doi: 10.1016/j.sigpro.2013.03.031
    [13] GOGGIN M E, SUNDARAM B, and MILONNI P W. Quantum logistic map[J]. Physical Review A, 1990, 41(10): 5705–5708. doi: 10.1103/PhysRevA.41.5705
    [14] TAN Ruchao, LEI Tong, ZHAO Qingmin, et al. Quantum color image encryption algorithm based on a hyper-chaotic system and quantum Fourier transform[J]. International Journal of Theoretical Physics, 2016, 55(12): 5368–5384. doi: 10.1007/s10773-016-3157-x
    [15] LIANG Xiyin and QI Guoyuan. Mechanical analysis of Chen chaotic system[J]. Chaos, Solitons & Fractals, 2017, 98: 173–177. doi: 10.1016/j.chaos.2017.03.021
    [16] YANG Yuguang, TIAN Ju, LEI He, et al. Novel quantum image encryption using one-dimensional quantum cellular automata[J]. Information Sciences, 2016, 345: 257–270. doi: 10.1016/j.ins.2016.01.078
    [17] LIU Xingbin, XIAO Di, and LIU Cong. Double quantum image encryption based on Arnold transform and qubit random rotation[J]. Entropy, 2018, 20(11): 867. doi: 10.3390/e20110867
    [18] WANG Jian, GENG Yacong, and LIU Jiqiang. Adaptive quantum image encryption method based on wavelet transform[EB/OL].https://arxiv.org/abs/1901.07762, 2019.
    [19] KHAN M and RASHEED A. Permutation-based special linear transforms with application in quantum image encryption algorithm[J]. Quantum Information Processing, 2019, 18(10): 298. doi: 10.1007/s11128-019-2410-7
    [20] LIU Xingbin, XIAO Di, and LIU Cong. Quantum image encryption algorithm based on bit-plane permutation and sine logistic map[J]. Quantum Information Processing, 2020, 19(8): 239. doi: 10.1007/s11128-020-02739-w
    [21] LIU Xingbin, XIAO Di, and LIU Cong. Three-level quantum image encryption based on Arnold transform and logistic map[J]. Quantum Information Processing, 2021, 20(1): 23. doi: 10.1007/s11128-020-02952-7
    [22] YU Shasha, ZHOU Nanrun, GONG Lihua, et al. Optical image encryption algorithm based on phase-truncated short-time fractional Fourier transform and hyper-chaotic system[J]. Optics and Lasers in Engineering, 2020, 124: 105816. doi: 10.1016/j.optlaseng.2019.105816
    [23] NIYAT A Y, MOATTAR M H, and TORSHIZ M N. Color image encryption based on hybrid hyper-chaotic system and cellular automata[J]. Optics and Lasers in Engineering, 2017, 90: 225–237. doi: 10.1016/j.optlaseng.2016.10.019
    [24] 卢爱平, 李盼池. 基于混沌序列的彩色图像量子加密方案[J]. 计算机与数字工程, 2021, 49(4): 692–697,730. doi: 10.3969/j.issn.1672-9722.2021.04.017

    LU Aiping and LI Panchi. Quantum encryption scheme for color images based on chaotic sequences[J]. Computer &Digital Engineering, 2021, 49(4): 692–697,730. doi: 10.3969/j.issn.1672-9722.2021.04.017
    [25] KARAFYLLIDIS I G. Definition and evolution of quantum cellular automata with two qubits per cell[J]. Physical Review A, 2004, 70(4): 044301. doi: 10.1103/PhysRevA.70.044301
    [26] 蔡理, 马西奎, 王森. 量子细胞神经网络的超混沌特性研究[J]. 物理学报, 2003, 52(12): 3002–3006. doi: 10.3321/j.issn:1000-3290.2003.12.013

    CAI Li, MA Xikui, and WANG Sen. Study of hyperchaotic behavior in quantum cellular neural networks[J]. Acta Physica Sinica, 2003, 52(12): 3002–3006. doi: 10.3321/j.issn:1000-3290.2003.12.013
    [27] TÓTH G, LENT C S, TOUGAW P D, et al. Quantum cellular neural networks[J]. Superlattices and Microstructures, 1996, 20(4): 473–478. doi: 10.1006/spmi.1996.0104
    [28] KANTZ H. A robust method to estimate the maximal Lyapunov exponent of a time series[J]. Physics Letters A, 1994, 185(1): 77–87. doi: 10.1016/0375-9601(94)90991-1
    [29] ZHANG Yi, LU Kai, GAO Yinghui, et al. NEQR: A novel enhanced quantum representation of digital images[J]. Quantum Information Processing, 2013, 12(8): 2833–2860. doi: 10.1007/s11128-013-0567-z
    [30] LI Haisheng, ZHU Qingxin, ZHOU Rigui, et al. Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases[J]. Information Sciences, 2014, 273: 212–232. doi: 10.1016/j.ins.2014.03.035
    [31] 李盼池, 曹梓崎. 基于量子比特相位的彩色图像描述方法及应用[J]. 电子与信息学报, 2017, 39(2): 489–493. doi: 10.11999/JEIT160303

    LI Panchi and CAO Ziqi. Quantum bits phase based representation and application for color images[J]. Journal of Electronics &Information Technology, 2017, 39(2): 489–493. doi: 10.11999/JEIT160303
    [32] HU Wenwen, ZHOU Rigui, LUO Jia, et al. Quantum image encryption algorithm based on Arnold scrambling and wavelet transforms[J]. Quantum Information Processing, 2020, 19(3): 82. doi: 10.1007/s11128-020-2579-9
    [33] HU Wenwen, ZHOU Rigui, JIANG Shexiang, et al. Quantum image encryption algorithm based on generalized Arnold transform and Logistic map[J]. CCF Transactions on High Performance Computing, 2020, 2(3): 228–253. doi: 10.1007/S42514-020-00043-8
    [34] JIANG Nan and WANG Luo. Analysis and improvement of the quantum Arnold image scrambling[J]. Quantum Information Processing, 2014, 13(7): 1545–1551. doi: 10.1007/s11128-014-0749-3
    [35] VEDRAL V, BARENCO A, and EKERT A. Quantum networks for elementary arithmetic operations[J]. Physical Review A, 1996, 54(1): 147–153. doi: 10.1103/PhysRevA.54.147
    [36] YANG C H, GE Zhengming, CHANG C M, et al. Chaos synchronization and chaos control of quantum-CNN chaotic system by variable structure control and impulse control[J]. Nonlinear Analysis:Real World Applications, 2010, 11(3): 1977–1985. doi: 10.1016/j.nonrwa.2009.04.019
    [37] SUDHEER K S and SABIR M. Adaptive function projective synchronization of two-cell Quantum-CNN chaotic oscillators with uncertain parameters[J]. Physics Letters A, 2009, 373(21): 1847–1851. doi: 10.1016/j.physleta.2009.03.052
    [38] WANG Xingyuan, CHEN Feng, and WANG Tian. A new compound mode of confusion and diffusion for block encryption of image based on chaos[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(9): 2479–2485. doi: 10.1016/j.cnsns.2009.10.001
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1061
  • HTML全文浏览量:  586
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 修回日期:  2022-01-08
  • 录用日期:  2022-01-14
  • 网络出版日期:  2022-02-02
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回