高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的探月雷达对月面浅表层不规则形状介质预测

李阳平 黄玲 王珂 赵海峰

李阳平, 黄玲, 王珂, 赵海峰. 基于深度学习的探月雷达对月面浅表层不规则形状介质预测[J]. 电子与信息学报, 2022, 44(4): 1222-1230. doi: 10.11999/JEIT211142
引用本文: 李阳平, 黄玲, 王珂, 赵海峰. 基于深度学习的探月雷达对月面浅表层不规则形状介质预测[J]. 电子与信息学报, 2022, 44(4): 1222-1230. doi: 10.11999/JEIT211142
LI Yangping, HUANG Ling, WANG Ke, ZHAO Haifeng. A Geometric Reconstrction Method for Predicting Shape of Irregular Rocks under Moon’s Subsurface Using Lunar Penetrating Radar Based on a Deep Learning Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1222-1230. doi: 10.11999/JEIT211142
Citation: LI Yangping, HUANG Ling, WANG Ke, ZHAO Haifeng. A Geometric Reconstrction Method for Predicting Shape of Irregular Rocks under Moon’s Subsurface Using Lunar Penetrating Radar Based on a Deep Learning Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1222-1230. doi: 10.11999/JEIT211142

基于深度学习的探月雷达对月面浅表层不规则形状介质预测

doi: 10.11999/JEIT211142
基金项目: 国家自然科学基金(61827803, 42171445)
详细信息
    作者简介:

    李阳平:女,1994年生,硕士,研究方向为深度学习与探地雷达信号处理

    黄玲:男,1981年生,博士,研究方向为地球物理电磁探测方法技术研究与装备研制

    王珂:男,1982年生,博士,研究方向为空间科学载荷平台

    赵海峰:男,1980年生,博士,研究方向为地外科学探测载荷

    通讯作者:

    赵海峰 hfzhao@csu.ac.cn

  • 中图分类号: TN911.7

A Geometric Reconstrction Method for Predicting Shape of Irregular Rocks under Moon’s Subsurface Using Lunar Penetrating Radar Based on a Deep Learning Algorithm

Funds: The National Natural Science Foundation of China (61827803, 42171445)
  • 摘要: 在月壤中掩埋的岩块几何形状和电性特征分布具有显著的不确定性,探月雷达(LPR)获得的回波信号的特征复杂,无法有效地对月壤内部结构进行精确的几何成像。该文提出一种基于主成分分析降维的深度学习数据处理方法,用于复杂月表以下岩石分布结构的快速数字化成像,可以直接建立回波信号特征与月岩几何拓扑的关联关系。首先基于Apollo探月任务返回的月岩样品照片,利用边缘检测等图像处理方法提取月岩介质的几何轮廓,构建含有月岩块体的地层模型;针对信息冗余的时域回波信号,采用主成分分析法对高维空间的回波数据进行降维处理,然后利用基于均方根传递(RMSprop)的反向传播算法构建针对月岩介质上表面轮廓和位置的拟合预测模型。仿真结果表明,对于掩埋的具有复杂几何特征和高介电常数的单月岩块地层结构,深度学习R-square确定系数可达到0.93,月岩上表面轮廓和位置预测结果与真实模型重合度较高;同时也对复杂多月岩随机分布模型进行了探索性神经网络几何重建建模和验证。此工作为后续地质科学领域开展基于数据驱动模型的地层成像相关研究提供了初步的参考。
  • 图  1  Apollo 14号返回样品图像

    图  2  获取月岩轮廓

    图  3  模拟二相不规则月岩环境

    图  4  多目标非均匀月岩地层

    图  5  神经网络模型示意图

    图  6  不规则月岩雷达回波信号

    图  7  不同数据量对训练结果影响

    图  8  较大差异介电常数不规则形状掩埋月岩体上表面轮廓的预测对比图

    图  9  较大差异介电常数不规则形状掩埋月岩体上表面轮廓预测结果的误差直方图

    图  10  较大差异介电常数不规则形状掩埋月岩体上表面轮廓预测示例

    图  11  月岩材料不规则月岩上表面轮廓预测

    图  12  含有多月岩块体地层模型雷达回波信号的B-Scan多道雷达回波数据图像

    图  13  含有多月岩块体地层模型上表面轮廓预测结果

    表  1  探月雷达的参数设计

    名称0.5 m深探月雷达
    主要参数和技术指标
    10 m深探月雷达
    主要参数和技术指标
    中心频率(MHz)1200700
    动态范围(dB)≥48≥96
    探测深度(m)≥0.5≥10
    深度分辨率(cm)≤2≤20
    下载: 导出CSV

    表  2  月壤电性参数表

    密度(g/cm3)介电常数损耗正切角样本编号
    1.0811.7040.008575061
    下载: 导出CSV

    表  3  月岩电性参数表

    密度(g/cm3)介电常数损耗正切角样本编号
    2.46.2460.001176315
    下载: 导出CSV

    表  4  神经网络模型结构参数

    名称参数
    输入层8
    输出层1
    误差函数Mean-Square Error (MSE)
    优化函数Root Mean Square Prop(RMSProp)[19]
    下载: 导出CSV

    表  5  神经网络结构

    隐藏层神经元个数激活函数
    164ReLU
    264ReLU
    364Sigmoid
    464Sigmoid
    532ReLU
    632ReLU
    716ReLU
    816ReLU
    下载: 导出CSV
  • [1] YANG Wei and LIN Yangting. New lunar samples returned by Chang’E-5: Opportunities for new discoveries and international collaboration[J]. The Innovation, 2021, 2(1): 100070. doi: 10.1016/j.xinn.2020.100070
    [2] ZHANG Jinhai, ZHOU Bin, LIN Yangting, et al. Lunar regolith and substructure at Chang’E-4 landing site in South Pole–Aitken basin[J]. Nature Astronomy, 2021, 5(1): 25–30. doi: 10.1038/s41550-020-1197-x
    [3] ZHANG Jinhai, YANG Wei, HU Sen, et al. Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(17): 5342–5347. doi: 10.1073/pnas.1503082112
    [4] ZHANG Ling, ZENG Zhaofa, LI Jing, et al. A story of regolith told by lunar penetrating radar[J]. Icarus, 2019, 321: 148–160. doi: 10.1016/j.icarus.2018.11.006
    [5] TRAVASSOS X L, AVILA S L, and IDA N. Artificial neural networks and machine learning techniques applied to ground penetrating radar: A review[J]. Applied Computing and Informatics, 2020, 17(2): 296–308. doi: 10.1016/j.aci.2018.10.001
    [6] 侯斐斐, 施荣华, 雷文太, 等. 面向探地雷达B-scan图像的目标检测算法综述[J]. 电子与信息学报, 2020, 42(1): 191–200. doi: 10.11999/JEIT190680

    HOU Feifei, SHI Ronghua, LEI Wentai, et al. A review of target detection algorithm for GPR B-scan processing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 191–200. doi: 10.11999/JEIT190680
    [7] 王建, 袁宵, 李禹, 等. 利用互相关和Hough变换快速检测探地雷达目标[J]. 电子与信息学报, 2013, 35(5): 1156–1162. doi: 10.3724/SP.J.1146.2012.01134

    WANG Jian, YUAN Xiao, LI Yu, et al. Fast detection of ground penetrating radar objects based on cross correlation and Hough transform[J]. Journal of Electronics &Information Technology, 2013, 35(5): 1156–1162. doi: 10.3724/SP.J.1146.2012.01134
    [8] GAO Jie, YUAN Dongdong, TONG Zheng, et al. Autonomous pavement distress detection using ground penetrating radar and region-based deep learning[J]. Measurement, 2020, 164: 108077. doi: 10.1016/j.measurement.2020.108077
    [9] LI Shuwei, GU Xingyu, XU Xiangrong, et al. Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm[J]. Construction and Building Materials, 2021, 273: 121949. doi: 10.1016/j.conbuildmat.2020.121949
    [10] KHUDOYAROV S, KIM N, and LEE J J. Three-dimensional convolutional neural network–based underground object classification using three-dimensional ground penetrating radar data[J]. Structural Health Monitoring, 2020, 19(6): 1884–1893. doi: 10.1177/1475921720902700
    [11] LIU T, KLOTZSCHE A, PONDKULE M, et al. Estimation of subsurface cylindrical object properties from GPR full-waveform inversion[C]. The 2017 9th International Workshop on Advanced Ground Penetrating Radar, Edinburgh, UK, 2017: 1–4.
    [12] GIANNAKIS I, GIANNOPOULOS A, and WARREN C. A machine learning scheme for estimating the diameter of reinforcing bars using ground penetrating radar[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(3): 461–465. doi: 10.1109/LGRS.2020.2977505
    [13] CARLSON I C and WALTON W J A. Apollo-14 rock samples[R]. JSC 14240, 1978.
    [14] GIANNOPOULOS A. Modelling ground penetrating radar by GprMax[J]. Construction and Building Materials, 2005, 19(10): 755–762. doi: 10.1016/j.conbuildmat.2005.06.007
    [15] DENG Caixia, WANG Guibin, and YANG Xinrui. Image edge detection algorithm based on improved canny operator[C]. 2013 International Conference on Wavelet Analysis and Pattern Recognition, Tianjin, China, 2013: 168–172.
    [16] GOLD T, BILSON E, and BARON R L. Electrical properties of Apollo 17 rock and soil samples and a summary of the electrical properties of lunar material at 450 MHz frequency[C]. The 7th Lunar Science Conference, New York, USA, 1976: 2593–2603.
    [17] WOLD S, ESBENSEN K, and GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/3): 37–52. doi: 10.1016/0169-7439(87)80084-9
    [18] PENNINGTON J, SCHOENHOLZ S S, and GANGULI S. Resurrecting the sigmoid in deep learning through dynamical isometry: Theory and practice[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 4788–4798.
    [19] HINTON G, SRIVASTAVA N, and SWERSKY K. Neural networks for machine learning lecture 6a overview of mini-batch gradient descent[J]. Cited on, 2012, 14(8): 2.
    [20] FIELD A. Logistic Regression[M]. FIELD A. Discovering Statistics Using SPSS. London: SAGE Publications Ltd, 2009: 264–315.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  662
  • HTML全文浏览量:  583
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 修回日期:  2022-03-14
  • 录用日期:  2022-03-16
  • 网络出版日期:  2022-03-21
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回