高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两个认证密钥协商协议的前向安全性分析

程庆丰 马玉千

程庆丰, 马玉千. 两个认证密钥协商协议的前向安全性分析[J]. 电子与信息学报, 2022, 44(12): 4294-4303. doi: 10.11999/JEIT211137
引用本文: 程庆丰, 马玉千. 两个认证密钥协商协议的前向安全性分析[J]. 电子与信息学报, 2022, 44(12): 4294-4303. doi: 10.11999/JEIT211137
CHENG Qingfeng, MA Yuqian. Cryptoanalysis on the Forward Security of Two Authenticated Key Protocols[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4294-4303. doi: 10.11999/JEIT211137
Citation: CHENG Qingfeng, MA Yuqian. Cryptoanalysis on the Forward Security of Two Authenticated Key Protocols[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4294-4303. doi: 10.11999/JEIT211137

两个认证密钥协商协议的前向安全性分析

doi: 10.11999/JEIT211137
基金项目: 国家自然科学基金(61872449)
详细信息
    作者简介:

    程庆丰:男,博士,教授,研究方向为公钥密码和密码协议

    马玉千:女,硕士生,研究方向为密码协议

    通讯作者:

    马玉千 yuqianm2000@qq.com

  • 中图分类号: TN918; TP309

Cryptoanalysis on the Forward Security of Two Authenticated Key Protocols

Funds: The National Natural Science Foundation of China (61872449)
  • 摘要: 目前,网络安全及隐私受到广泛关注。前向安全性是Günther在1989年提出的一种认证密钥协商协议( AKA)的安全属性(doi: 10.1007/3-540-46885-4_5),该性质经过30年的蓬勃发展已经成为研究领域的热点之一。该文主要分析了MZK20和VSR20两个AKA协议。首先在启发式分析的基础上,利用BAN逻辑分析了MZK20协议不具有弱前向安全性;其次利用启发式分析和Scyther工具证明了VSR20协议不具备前向安全性。最后,在分析VSR20协议设计缺陷的基础上,提出了改进方案,并在eCK模型下证明了改进后协议的安全性;并且,结合Scyther软件证明了改进VSR20协议与VSR20协议相比明显提高了安全性。
  • 图  1  VSR20协议的登录和认证阶段

    图  2  Scyther软件分析VSR20协议

    图  3  改进VSR20协议

    图  4  Scyther软件分析改进后VSR20协议

    表  1  BAN逻辑分析MZK20协议

     MZK20协议期望达成的目标如下(参与双方用$ {{\text{S}}_j} $和$ {{\text{U}}_u} $表示,$ {K_{uj}} $表示双方达成的会话密钥):
     G1. $ {{\text{S}}_j}\;{\text{believes}}\;{K_{uj}} $;
     G2. $ {{\text{S}}_j}\;{\text{believes}}\;({{\text{U}}_u}\;{\text{believes}}\;{K_{uj}}) $;
     G3. $ {{\text{U}}_u}\;{\text{believes}}\;{K_{uj}} $;
     G4. $ {{\text{U}}_u}\;{\text{believes}}\;({{\text{S}}_j}\;{\text{believes}}\;{K_{uj}}) $.
     消息:
     $ {\text{Message}}\,{\text{1}}\quad {{\text{U}}_u} \to {{\text{S}}_j}: < {\{ {\text{I}}{{\text{D}}_u}\} _{{K_u}}},{\{ {C_u}\} _{{K_S}}} > $;
     $ {\text{Message}}\,{\text{2}}\quad {{\text{S}}_j} \to {{\text{U}}_u}: < {D_j}{ > _{ < {\text{I}}{{\text{D}}_u}{ > _{{K_{{\text{RC}}}}}}}} $;
     假设:
     A1.$ {{\text{U}}_u}\;{\text{believes}}\;{\text{fresh}}({C_u}) $,$ {{\text{S}}_j}\;{\text{believes}}\;{\text{fresh}}({D_j}) $;
     A2.$ {{\text{U}}_u}\;{\text{believes}}\;{C_u} $,$ {{\text{S}}_j}\;{\text{believes}}\;{D_j} $;
     A3.$ {{\text{U}}_u}\;{\text{believes}}\;({{\text{U}}_u}\mathop \Leftrightarrow \limits^{{K_u}} {{\text{S}}_j}) $,$ {{\text{U}}_u}\;{\text{believes}}\;({{\text{U}}_u}\mathop \Leftrightarrow \limits^{{K_u}} {{\text{S}}_j}) $;
     A4.$ {{\text{U}}_u}\;{\text{believes}}\;({{\text{S}}_j}\;{\text{controls}}\;{K_{uj}}) $,$ {{\text{S}}_j}\;{\text{believes}}\;({{\text{U}}_u}\;{\text{controls}}\;{K_{uj}}) $;
     A5.$ {{\text{S}}_j}\;{\text{believes}}\;{K_{{\text{RC}}}} $,$ {{\text{U}}_u}\;{\text{believes}}\;{K_{{\text{RC}}}} $.
     推理过程:
     F1. $ {{\text{S}}_j}\;{\text{sees}}\; < {\{ {\text{I}}{{\text{D}}_u}\} _{{K_u}}},{\{ {C_u}\} _{{K_S}}} > $;
     F2. $ {{\text{S}}_j}\;{\text{sees}}\;{\{ I{D_u}\} _{{K_u}}} $,$ {{\text{S}}_j}\;{\text{sees}}\;{\{ {C_u}\} _{{K_s}}} $;
     F3. $ {{\text{S}}_j}\;{\text{believes}}\;({{\text{U}}_u}\;{\text{said}}\;{\text{I}}{{\text{D}}_u}) $,$ {{\text{S}}_j}\;{\text{believes}}\;({{\text{U}}_u}\;{\text{said}}\;{C_u}) $($ {\text{I}}{{\text{D}}_u} = {C_u}P \oplus {\text{PI}}{{\text{D}}_u} $, $ {X_u} = h({\text{I}}{{\text{D}}_u}||{\text{p}}{{\text{k}}_{{\text{RC}}}}) $且$ {\text{PI}}{{\text{D}}_u} = {\{ {\text{I}}{{\text{D}}_u}\} _{{K_u}}} $);
     F4. $ {{\text{S}}_j}\;{\text{believes}}\;({{\text{U}}_u}\;{\text{believes}}\;{C_u}) $,$ {{\text{S}}_j}\;{\text{believes}}\;({{\text{U}}_u}\;{\text{believes}}\;{X_u}) $;
     F5. $ {{\text{S}}_j}\;{\text{believes}}\;({{\text{U}}_u}\;{\text{believes}}\;{K_{uj}}) $($ {K_{uj}} = {\text{S}}{{\text{K}}_{uj}} = h({\text{I}}{{\text{D}}_u}||{C_u}P||{D_j}||{X_u}||{\text{I}}{{\text{D}}_j}) $);
     F6. $ {{\text{S}}_j}\;{\text{believes}}\;{K_{uj}} $;
     F7. $ {{\text{U}}_u}\;{\text{sees}}\; < {D_j}{ > _{ < {\text{I}}{{\text{D}}_u}{ > _{{K_{{\text{RC}}}}}}}} $;
     F8. $ {{\text{U}}_u}\;{\text{believes}}\;({{\text{S}}_j}\;{\text{said}}\;{D_j}) $($ {K_{uj}} = {\text{S}}{{\text{K}}_{uj}} = h({\text{I}}{{\text{D}}_u}||{C_u}P||{D_j}||{X_u}||{\text{I}}{{\text{D}}_j}) $).
    下载: 导出CSV
  • [1] GÜNTHER C G. An identity-based key-exchange protocol[C]. Workshop on the Theory and Application of of Cryptographic Techniques, Houthalen, Belgium, 1989: 29–37.
    [2] MATSUMOTO T, TAKASHIMA Y, and IMAI H. On seeking smart public-key-distribution systems[J]. Transactions of the Institute of Electronics and Communication Engineers of Japan Section E, 1986, 69(2): 99–106.
    [3] JEONG I R, KATZ J, and LEE D H. One-round protocols for two-party authenticated key exchange[C]. The 2nd International Conference on Applied Cryptography and Network Security, Yellow Mountain, China, 2004: 220–232.
    [4] KRAWCZYK H. HMQV: A high-performance secure Diffie-Hellman protocol[C]. The 25th Annual International Cryptology Conference, Santa Barbara, USA, 2005: 546–566.
    [5] BOYD C and NIETO J G. On forward secrecy in one-round key exchange[C]. The 13th IMA International Conference on Cryptography and Coding, Oxford, UK, 2011: 451–468.
    [6] 曹晨磊, 刘明奇, 张茹, 等. 基于层级化身份的可证明安全的认证密钥协商协议[J]. 电子与信息学报, 2014, 36(12): 2848–2854. doi: 10.3724/SP.J.1146.2014.00684

    CAO Chenlei, LIU Mingqi, ZHANG Ru, et al. Provably secure authenticated key agreement protocol based on hierarchical identity[J]. Journal of Electronics &Information Technology, 2014, 36(12): 2848–2854. doi: 10.3724/SP.J.1146.2014.00684
    [7] 杨孝鹏, 马文平, 张成丽. 一种新型基于环上带误差学习问题的认证密钥交换方案[J]. 电子与信息学报, 2015, 37(8): 1984–1988. doi: 10.11999/JEIT141506

    YANG Xiaopeng, MA Wenping, and ZHANG Chengli. New authenticated key exchange scheme based on ring learning with errors problem[J]. Journal of Electronics &Information Technology, 2015, 37(8): 1984–1988. doi: 10.11999/JEIT141506
    [8] 熊婧, 王建明. 基于HASH函数的RFID安全双向认证协议研究[J]. 中国测试, 2017, 43(3): 87–90,96. doi: 10.11857/j.issn.1674-5124.2017.03.018

    XIONG Jing and WANG Jianming. Based on HASH function of RFID security authentication protocol and analysis[J]. China Measurement &Test, 2017, 43(3): 87–90,96. doi: 10.11857/j.issn.1674-5124.2017.03.018
    [9] LI Xiong, PENG Jieyao, OBAIDAT M S, et al. A secure three-factor user authentication protocol with forward secrecy for wireless medical sensor network systems[J]. IEEE Systems Journal, 2021, 14(1): 39–50. doi: 10.1109/JSYST.2019.2899580
    [10] SALEEM M A, SHAMSHAD S, AHMED S, et al. Security analysis on “A secure three-factor user authentication protocol with forward secrecy for wireless medical sensor network systems”[J]. IEEE Systems Journal, 2021, 15(4): 5557–5559. doi: 10.1109/JSYST.2021.3073537
    [11] YANG Zheng, HE Jun, TIAN Yangguang, et al. Faster authenticated key agreement with perfect forward secrecy for industrial internet-of-things[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6584–6596. doi: 10.1109/TII.2019.2963328
    [12] CHANG C C and LE H D. A provably secure, efficient, and flexible authentication scheme for ad hoc wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(1): 357–366. doi: 10.1109/TWC.2015.2473165
    [13] GOPE P and HWANG T. A realistic lightweight anonymous authentication protocol for securing real-time application data access in wireless sensor networks[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7124–7132. doi: 10.1109/TIE.2016.2585081
    [14] 王晨宇, 汪定, 王菲菲, 等. 面向多网关的无线传感器网络多因素认证协议[J]. 计算机学报, 2020, 43(4): 683–700. doi: 10.11897/SP.J.1016.2020.00683

    WANG Chenyu, WANG Ding, WANG Feifei, et al. Multi-factor user authentication scheme for multi-gateway wireless sensor networks[J]. Chinese Journal of Computers, 2020, 43(4): 683–700. doi: 10.11897/SP.J.1016.2020.00683
    [15] QIU Shuming, WANG Ding, XU Guoai, et al. Practical and provably secure three-factor authentication protocol based on extended chaotic-maps for mobile lightweight devices[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(2): 1338–1351. doi: 10.1109/TDSC.2020.3022797
    [16] SHAMSHAD S, SALEEM M A, OBAIDAT M S, et al. On the security of a lightweight privacy-preserving authentication protocol for VANETs[C]. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 2021: 1766–1770.
    [17] RESCORLA E.Internet Engineering Task Force. RFC 8446-The Transport Layer Security (TLS) protocol version 1.3[S]. 2018.
    [18] BOYD C and GELLERT K. A modern view on forward security[J]. The Computer Journal, 2021, 64(4): 639–652. doi: 10.1093/comjnl/bxaa104
    [19] LAMACCHIA B, LAUTER K, and MITYAGIN A. Stronger security of authenticated key exchange[C]. The 1st International Conference on Provable Security, Wollongong, Australia, 2007: 1–16.
    [20] CANETTI R and KRAWCZYK H. Analysis of key-exchange protocols and their use for building secure channels[C]. International Conference on the Theory and Applications of Cryptographic Techniques, Innsbruck, Austria, 2001: 453–474.
    [21] MOHAMED M I, WANG Xiaofen, and ZHANG Xiaosong. Adaptively-secure authenticated key exchange protocol in standard model[J]. International Journal of Network Security, 2018, 20(2): 345–358. doi: 10.6633/IJNS.201803.20(2).16
    [22] BURROWS M, ABADI M, and NEEDHAM R M. A logic of authentication[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1989, 426(1871): 233–271. doi: 10.1098/rspa.1989.0125
    [23] CREMERS C J F. The scyther tool: Verification, falsification, and analysis of security protocols[C]. International Conference on Computer Aided Verification, Princeton, USA, 2008: 414–418.
    [24] AKRAM M A, GHAFFAR Z, MAHMOOD K, et al. An anonymous authenticated key-agreement scheme for multi-server infrastructure[J]. Human-centric Computing and Information Sciences, 2020, 10(1): 22. doi: 10.1186/s13673-020-00227-9
    [25] SURESHKUMAR V, ANANDHI S, AMIN R, et al. Design of robust mutual authentication and key establishment security protocol for cloud-enabled smart grid communication[J]. IEEE Systems Journal, 2021, 15(3): 3565–3572. doi: 10.1109/JSYST.2020.3039402
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  682
  • HTML全文浏览量:  572
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 修回日期:  2022-04-20
  • 录用日期:  2022-05-05
  • 网络出版日期:  2022-05-10
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回