高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于硬件损伤的异构网络鲁棒安全资源分配算法

徐勇军 曹奇 万杨亮 周继华 赵涛 陈前斌

徐勇军, 曹奇, 万杨亮, 周继华, 赵涛, 陈前斌. 基于硬件损伤的异构网络鲁棒安全资源分配算法[J]. 电子与信息学报, 2023, 45(1): 243-253. doi: 10.11999/JEIT211123
引用本文: 徐勇军, 曹奇, 万杨亮, 周继华, 赵涛, 陈前斌. 基于硬件损伤的异构网络鲁棒安全资源分配算法[J]. 电子与信息学报, 2023, 45(1): 243-253. doi: 10.11999/JEIT211123
XU Yongjun, CAO Qi, WAN Yangliang, ZHOU Jihua, ZHAO Tao, CHEN Qianbin. Robust Secure Resource Allocation Algorithm for Heterogeneous Networks with Hardware Impairments[J]. Journal of Electronics & Information Technology, 2023, 45(1): 243-253. doi: 10.11999/JEIT211123
Citation: XU Yongjun, CAO Qi, WAN Yangliang, ZHOU Jihua, ZHAO Tao, CHEN Qianbin. Robust Secure Resource Allocation Algorithm for Heterogeneous Networks with Hardware Impairments[J]. Journal of Electronics & Information Technology, 2023, 45(1): 243-253. doi: 10.11999/JEIT211123

基于硬件损伤的异构网络鲁棒安全资源分配算法

doi: 10.11999/JEIT211123
基金项目: 国家自然科学基金(61601071, 62071078),国家自然科学基金重点项目(U21A20448),重庆市自然科学基金(cstc2019jcyj-xfkxX0002),重庆市留学回国人员创业创新支持计划(cx2020095)
详细信息
    作者简介:

    徐勇军:男,副教授,硕士生导师,研究方向为鲁棒资源分配、异构无线网络、硬件损伤通信

    曹奇:男,硕士生,研究方向为硬件损伤通信、异构网络鲁棒资源分配

    万杨亮:女,工程师,研究方向为移动网络、无线通信、硬件损伤通信

    周继华:男,博士生导师,研究员,研究方向为移动网络、无线通信、硬件损伤通信

    赵涛:男,硕士,研究员,研究方向为无线通信、硬件损伤通信

    陈前斌:男,教授,博士生导师,研究方向为无线通信、鲁棒资源分配、硬件损伤通信

    通讯作者:

    周继华 jhzhou@ict.ac.cn

  • 中图分类号: TN929.5

Robust Secure Resource Allocation Algorithm for Heterogeneous Networks with Hardware Impairments

Funds: The National Natural Science Foundation of China (61601071, 62071078), The Key Program of the National Natural Science Foundation of China (U21A20448), The Natural Science Foundation of Chongqing (cstc2019jcyj-xfkxX0002), The Entrepreneurship and Innovation Support Program for Returned Overseas Students of Chongqing (cx2020095)
  • 摘要: 针对多蜂窝多用户异构网络中收发机处信号畸变、用户信息泄露和传输中断等问题,该文提出一种基于硬件损伤的异构网络鲁棒安全资源分配算法。考虑小蜂窝用户最小安全速率约束、小蜂窝基站最大发射功率约束和宏用户干扰功率约束,建立了基于有界信道不确定性的能效最大化资源分配模型。基于Dinkelbach法、最坏准则法和连续凸近似理论,将原非凸资源分配问题等价转换为凸优化问题,并利用拉格朗日对偶算法得到解析解。仿真结果表明,与现有算法相比,所提算法具有较好的能效和鲁棒性。
  • 图  1  一种下行传输模式下的多蜂窝异构无线网络

    图  2  算法求解流程图

    图  3  本文算法的收敛性能

    图  4  电路功耗与硬件损伤系数对能量效率的影响

    图  5  最小安全速率和干扰功率约束中不确定性对能量效率的影响

    图  6  跨层干扰阈值和速率的不确定性对能量效率的影响

    图  7  能量效率与电路功耗在不同算法下的关系

    图  8  宏用户实际接收的干扰功率与信道不确定性上界$ {\varepsilon _m} $在不同算法下的关系

    算法1 小蜂窝迭代能效资源分配算法
     初始化系统参数:$ M $, $ N $, $ {U_n} $, $ {\bar h_{i,n}} $, $ {\bar g_{i,n}} $, $ h_{i,n}^{\text{E}} $, $ g_n^{\text{E}} $,$ {\bar G_{m,n}} $, $ {p_m} $,
     $ {P_c} $, $ I_m^{{\text{th}}} $, $ R_{i,n}^{{\text{min}}} $, $ P_n^{\max } $, $ {\varepsilon _m} $,$ {\beta _{i,n}} $, $ {\alpha _{i,n}} $;定义辅助变量${\eta _{\rm{E}}}$;定义最
     大迭代次数$ D $和收敛精度$ \varpi $;初始化外层迭代次数$ d = 0 $;
     (1) While $\left| {\frac{ {\displaystyle\sum\limits_{n = 1}^N {\displaystyle\sum\limits_{i = 1}^{ {U_n} } { { {\hat R}_{i,n} }(d)} } } }{ {\displaystyle\sum\limits_{n = 1}^N {\displaystyle\sum\limits_{i = 1}^{ {U_n} } { {p_{i,n} }(d)} + {P_n}(d)} } } - {\eta _{\rm{E}}}(d - 1)} \right| > \varpi$和

       $d \le D$,do
     (2) 初始化拉格朗日乘子及对应步长;定义内层最大迭代次数
       $L$,初始化内层迭代次数$l = 0$;
     (3) 循环
     (4)  For $ m = 1:1:M $
     (5)   For $ n = 1:1:N $
     (6)    For $ i = 1:1:{U_n} $
     (7)     根据式(42)计算最优发射功率$p_{i,n}^*$;
     (8)     根据式(44)计算${Z_n}$;
     (9)     根据式(45)—式(47)更新拉格朗日乘子${\mu _n}(l)$,
            ${\lambda _m}(l)$和${\varpi _{i,n}}(l)$;
     (10)     End For
     (11)    End For
     (12)  End For
     (13)  更新$l = l + 1$;
     (14)  Until收敛或$l = L$;
     (15) 更新
      $d = d + 1$和${\eta _{\rm{E}}}(d) = \frac{ {\displaystyle\sum\limits_{n = 1}^N {\displaystyle\sum\limits_{i = 1}^{ {U_n} } { { {\hat R}_{i,n} }(d - 1)} } } }{ {\displaystyle\sum\limits_{n = 1}^N {\displaystyle\sum\limits_{i = 1}^{ {U_n} } { {p_{i,n} }(d - 1)} + {P_n}(d - 1)} } }$;
     (16) End While
    下载: 导出CSV
  • [1] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896
    [2] LIU Xilong and ANSARI N. Green relay assisted D2D communications with dual batteries in heterogeneous cellular networks for IoT[J]. IEEE Internet of Things Journal, 2017, 4(5): 1707–1715. doi: 10.1109/JIOT.2017.2717853
    [3] KHALILI A, AKHLAGHI S, TABASSUM H, et al. Joint user association and resource allocation in the uplink of heterogeneous networks[J]. IEEE Wireless Communications Letters, 2020, 9(6): 804–808. doi: 10.1109/LWC.2020.2970696
    [4] FANG Fang, ZHANG Haijun, CHENG Julian, et al. Energy-efficient resource allocation for downlink non-orthogonal multiple access network[J]. IEEE Transactions on Communications, 2016, 64(9): 3722–3732. doi: 10.1109/TCOMM.2016.2594759
    [5] CUMANAN K, DING Zhiguo, SHARIF B, et al. Secrecy rate optimizations for a MIMO secrecy channel with a multiple-antenna eavesdropper[J]. IEEE Transactions on Vehicular Technology, 2014, 63(4): 1678–1690. doi: 10.1109/TVT.2013.2285244
    [6] AHMED M, LI Yong, ZHUO Yinxiao, et al. Secrecy ensured socially aware resource allocation in device-to-device communications underlaying HetNet[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4933–4948. doi: 10.1109/TVT.2019.2890879
    [7] MA Hui, CHENG Julian, and WANG Xianfu. Proportional fair secrecy beamforming for MISO heterogeneous cellular networks with wireless information and power transfer[J]. IEEE Transactions on Communications, 2019, 67(8): 5659–5673. doi: 10.1109/TCOMM.2019.2910260
    [8] LI Bin, FEI Zesong, and CHU Zheng. Optimal transmit beamforming for secure SWIPT in a two-tier HetNet[J]. IEEE Communications Letters, 2017, 21(11): 2476–2479. doi: 10.1109/LCOMM.2017.2734759
    [9] LI Bin, FEI Zesong, CHU Zheng, et al. Secure transmission for heterogeneous cellular networks with wireless information and power transfer[J]. IEEE Systems Journal, 2018, 12(4): 3755–3766. doi: 10.1109/JSYST.2017.2713881
    [10] LIU Zhixin, WANG Sainan, LIU Yang, et al. Robust secure transmission and power transfer in heterogeneous networks with confidential information[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11192–11205. doi: 10.1109/TVT.2020.3008349
    [11] ZHANG Bo, LI Bin, HUANG Kaizhi, et al. Robust secrecy energy efficiency optimization for wireless powered heterogeneous networks using distributed ADMM algorithm[J]. IEEE Access, 2019, 7: 116277–116294. doi: 10.1109/ACCESS.2019.2935798
    [12] BJÖRNSON E, HOYDIS J, KOUNTOURIS M, et al. Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits[J]. IEEE Transactions on Information Theory, 2014, 60(11): 7112–7139. doi: 10.1109/TIT.2014.2354403
    [13] XU Yongjun, XIE Hao, and HU R Q. Max-min beamforming design for heterogeneous networks with hardware impairments[J]. IEEE Communications Letters, 2021, 25(4): 1328–1332. doi: 10.1109/LCOMM.2020.3044936
    [14] XU Yongjun, LI Guoquan, YANG Yang, et al. Robust resource allocation and power splitting in SWIPT enabled heterogeneous networks: A robust minimax approach[J]. IEEE Internet of Things Journal, 2019, 6(6): 10799–10811. doi: 10.1109/JIOT.2019.2941897
    [15] MANSUKHANI J and RAY P. Censored spectrum sharing strategy for MIMO systems in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(12): 5500–5510. doi: 10.1109/TWC.2019.2936839
    [16] WANG Shaowei, SHI Weijia, and WANG Chonggang. Energy-efficient resource management in OFDM-based cognitive radio networks under channel uncertainty[J]. IEEE Transactions on Communications, 2015, 63(9): 3092–3102. doi: 10.1109/TCOMM.2015.2452251
    [17] HAN Dongsheng, LI Shijie, PENG Yuefeng, et al. Energy sharing-based energy and user joint allocation method in heterogeneous network[J]. IEEE Access, 2020, 8: 37077–37086. doi: 10.1109/ACCESS.2020.2975293
    [18] 徐勇军, 谷博文, 杨洋, 等. 基于不完美CSI的D2D通信网络鲁棒能效资源分配算法[J]. 电子与信息学报, 2021, 43(8): 2189–2198. doi: 10.11999/JEIT200587

    XU Yongjun, GU Bowen, YANG Yang, et al. Robust energy-efficient resource allocation algorithm in D2D communication networks with imperfect CSI[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2189–2198. doi: 10.11999/JEIT200587
    [19] BEN-TAL A, EL GHAOUI L, and NEMIROVSKI A. Robust Optimization[M]. Princeton: Princeton University Press, 2009.
    [20] DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492–498. doi: 10.1287/mnsc.13.7.492
    [21] PAPANDRIOPOULOS J and EVANS J S. SCALE: A low-complexity distributed protocol for spectrum balancing in multiuser DSL networks[J]. IEEE Transactions on Information Theory, 2009, 55(8): 3711–3724. doi: 10.1109/TIT.2009.2023751
    [22] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [23] 李国权, 徐勇军, 陈前斌. 基于干扰效率多蜂窝异构无线网络最优基站选择及功率分配算法[J]. 电子与信息学报, 2020, 42(4): 957–964. doi: 10.11999/JEIT190419

    LI Guoquan, XU Yongjun, and CHEN Qianbin. Interference efficiency-based base station selection and power allocation algorithm for multi-cell heterogeneous wireless networks[J]. Journal of Electronics &Information Technology, 2020, 42(4): 957–964. doi: 10.11999/JEIT190419
    [24] GUO Shengjie and ZHOU Xiangwei. Robust resource allocation with imperfect channel estimation in NOMA-based heterogeneous vehicular networks[J]. IEEE Transactions on Communications, 2019, 67(3): 2321–2332. doi: 10.1109/TCOMM.2018.2885999
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  135
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 录用日期:  2022-03-01
  • 修回日期:  2022-02-24
  • 网络出版日期:  2022-03-10
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回