高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

UWB雷达芯片的研究现状与发展

罗朋 胡振峰 田世伟 刘马良

罗朋, 胡振峰, 田世伟, 刘马良. UWB雷达芯片的研究现状与发展[J]. 电子与信息学报, 2022, 44(4): 1176-1192. doi: 10.11999/JEIT211082
引用本文: 罗朋, 胡振峰, 田世伟, 刘马良. UWB雷达芯片的研究现状与发展[J]. 电子与信息学报, 2022, 44(4): 1176-1192. doi: 10.11999/JEIT211082
LUO Peng, HU Zhenfeng, TIAN Shiwei, LIU Maliang. The Status and Trends of UWB Radar Integrated Circuit[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1176-1192. doi: 10.11999/JEIT211082
Citation: LUO Peng, HU Zhenfeng, TIAN Shiwei, LIU Maliang. The Status and Trends of UWB Radar Integrated Circuit[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1176-1192. doi: 10.11999/JEIT211082

UWB雷达芯片的研究现状与发展

doi: 10.11999/JEIT211082
基金项目: 国家自然科学基金(61874082, 62090040, 62021004),西安电子科技大学重庆集成电路创新研究院产学研项目(CQIRI-CXYHT-2021-02)
详细信息
    作者简介:

    罗朋:男,1995年生,博士生,研究方向为超宽带射频集成电路设计

    胡振峰:男,1995年生,硕士生,研究方向为超宽带射频集成电路设计

    田世伟:男,1986年生,助理研究员,主要研究方向为卫星导航、卫星通信与协同定位

    刘马良:男,1985年生,教授,研究方向为微波、毫米波、混合信号集成电路设计

    通讯作者:

    刘马良 mlliu@xidian.edu.cn

  • 中图分类号: TN95; TN47

The Status and Trends of UWB Radar Integrated Circuit

Funds: The National Natural Science Foundation of China (61874082, 62090040, 62021004), The Industry-University-Academy Cooperation Program of Xidian University-Chongqing IC Innovation Research Institute (CQIRI-CXYHT-2021-02)
  • 摘要: 超宽带(UWB)系统具有高传输速率、低功耗、探测精度高、穿透性强、安全性高等优势,在军事、雷达、生物探测、短距通信及室内室外高精度定位等场景有着广泛的应用。并且随着半导体技术的发展,基于CMOS的UWB雷达芯片成为研究热点。国内外众多学者及商业公司提出各具优势的UWB芯片及系统。该文从UWB系统、UWB芯片架构中关键电路和关键技术的研究现状与发展进行综述。
  • 图  1  UWB系统的优势与应用场景

    图  2  频移高斯脉冲时域波形

    图  3  文献[4]中全数字高斯脉冲产生电路

    图  4  文献[5]中直接射频合成高斯脉冲的实现电路

    图  5  文献[8]中提出的数字脉冲产生电路

    图  6  文献[8]采用的全数字脉冲产生技术

    图  7  文献[9]采用混频器实现脉冲产生电路

    图  8  文献[11]的开关键控调制产生方式

    图  9  文献[13]通过控制压控振荡器的接地端实现开关键控调制

    图  10  文献[19]OOK调制产生电路

    图  11  文献[20]的调制电路

    图  12  文献[22]所提调制电路

    图  13  文献[26]调制产生电路

    图  14  文献[32]数字Doherty功率放大器

    图  15  文献[33]接收机架构

    图  16  时间扩展采样原理

    图  17  文献[34]基于时间扩展采样架构

    图  18  等效时间采样原理

    图  19  文献[37]基于等效时间采样接收机结构

    图  20  扫描阈值采样结构原理

    图  21  文献[5]基于ST 采样接收机结构

    图  22  基于能量检测UWB接收机架构

    图  23  能量检测原理

    图  24  文献[9]基于能量检测接收机架构

    图  25  常见结构的低噪声放大器

    图  26  文献[48]采用的自适应增益低噪声放大器

    图  27  文献[11]采用的带有源balun的两级LNA结构

    图  28  文献[22]的有源balun结构

    图  29  文献[51]的噪声相消的结构

    图  30  文献[52]提出的改进型噪声相消技术

    表  1  调制方式性能汇总

    文献工艺(nm)调制方式数据速率(Mb/s)带宽(GHz)通信距离(cm)
    [11]180OOK13.0~4.0200
    [13]40OOK38~245060.05
    [19]65OOK10006.5~8.515
    [20]180PPM0.0033.0~8.0
    [22]65D-MPPM5003.0~5.0100
    [26]180PSK2503.5~6.5
    下载: 导出CSV

    表  2  低噪声放大器性能汇总

    文献频率(GHz)工艺(nm)增益(dB)噪声(dB)功耗(mW)
    [48]75~806515
    [11]3~4180304.205.04
    [22]3~565334.5012.60
    [51]1~114014~173.50~5.509.00
    [52]0.02~4.502815.22.09~3.204.50
    下载: 导出CSV
  • [1] RAZAVI B, AYTUR T, LAM C, et al. A UWB CMOS transceiver[J]. IEEE Journal of Solid-State Circuits, 2005, 40(12): 2555–2562. doi: 10.1109/JSSC.2005.857430
    [2] TSANG T K K and EL-GAMAL M N. Ultra-wideband (UWB) communications systems: An overview[C]. The 3rd International IEEE-NEWCAS Conference, Quebec, Canada, 2005.
    [3] CHEN Xiaomin and KIAEI S. Monocycle shapes for ultra wideband system[C]. 2002 IEEE International Symposium on Circuits and Systems, Phoenix-Scottsdale, USA, 2002.
    [4] NORIMATSU T, FUJIWARA R, KOKUBO M, et al. A UWB-IR transmitter with digitally controlled pulse generator[J]. IEEE Journal of Solid-State Circuits, 2007, 42(6): 1300–1309. doi: 10.1109/JSSC.2007.897137
    [5] ANDERSEN N, GRANHAUG K, MICHAELSEN J A, et al. A 118-mW pulse-based radar SoC in 55-nm CMOS for non-contact human vital signs detection[J]. IEEE Journal of Solid-State Circuits, 2017, 52(12): 3421–3433. doi: 10.1109/JSSC.2017.2764051
    [6] EBRAZEH A and MOHSENI P. 30 pJ/b, 67 Mbps, centimeter-to-meter range data telemetry with an IR-UWB wireless link[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(3): 362–369. doi: 10.1109/TBCAS.2014.2328492
    [7] CHEN Fei, LI Yu, LIU Dang, et al. 3 A 1mW 1Mb/s 7.75-to-8.25GHz chirp-UWB transceiver with low peak-power transmission and fast synchronization capability[C]. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, USA, 2014.
    [8] ALLEBES E, SINGH G, HE Yuming, et al. 21.2 A 3-to-10GHz 180pJ/b IEEE802.15. 4z/4a IR-UWB coherent polar transmitter in 28nm CMOS with asynchronous amplitude pulse-shaping and injection-locked phase modulation[C]. 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2021.
    [9] SONG Haixin, LIU Dang, ZHANG Yining, et al. A 6.5–8.1-GHz communication/ranging VWB transceiver for secure wireless connectivity with enhanced bandwidth efficiency and ΔΣ energy detection[J]. IEEE Journal of Solid-State Circuits, 2020, 55(2): 219–232. doi: 10.1109/JSSC.2019.2953828
    [10] KIM N S and RABAEY J M. A high data-rate energy-efficient triple-channel UWB-based cognitive radio[J]. IEEE Journal of Solid-State Circuits, 2016, 51(4): 809–820. doi: 10.1109/JSSC.2015.2512934
    [11] LIU Dang, NI Xuwen, ZHOU Ranran, et al. A 0.42-mW 1-Mb/s 3- to 4-GHz transceiver in 0.18-μm CMOS with flexible efficiency, bandwidth, and distance control for IoT applications[J]. IEEE Journal of Solid-State Circuits, 2017, 52(6): 1479–1494. doi: 10.1109/JSSC.2017.2665644
    [12] CREPALDI M, LI Chen, DRONSON K, et al. An ultra-low-power interference-robust IR-UWB transceiver chipset using self-synchronizing OOK modulation[C]. 2010 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2010.
    [13] TAGHIVAND M, RAJAVI Y, AGGARWAL K, et al. An energy harvesting 2×2 60 GHz transceiver with scalable data rate of 38-to-2450Mb/s for near-range communication[C].The IEEE 2014 Custom Integrated Circuits Conference, San Jose, USA, 2014.
    [14] BOURDEL S, BACHELET Y, GAUBERT J, et al. A 9-pJ/pulse 1.42-vpp OOK CMOS UWB pulse generator for the 3.1–10.6-GHz FCC band[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(1): 65–73. doi: 10.1109/TMTT.2009.2035959
    [15] ZHANG Zhe, LI Yongfu, MOUTHAAN K, et al. A miniature mode reconfigurable inductorless IR-UWB transmitter–receiver for wireless short-range communication and vital-sign sensing[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8(2): 294–305. doi: 10.1109/JETCAS.2018.2799930
    [16] LO Y T, YUI C C, and KIANG J F. OOK/BPSK-modulated impulse transmitters integrated with leakage-cancelling circuit[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1): 218–224. doi: 10.1109/TMTT.2012.2226746
    [17] CREPALDI M, ANGOTZI G N, and BERDONDINI L. A 0.34 mm² 1 Gb/s non-coherent UWB receiver architecture with pulse enhancement and double PLL clock/data packet recovery[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2019, 66(7): 2735–2748. doi: 10.1109/TCSI.2019.2898042
    [18] GENG Shuli, LIU Dang, LI Yanfeng, et al. A 13.3 mW 500 Mb/s IR-UWB transceiver with link margin enhancement technique for meter-range communications[J]. IEEE Journal of Solid-State Circuits, 2015, 50(3): 669–678. doi: 10.1109/JSSC.2015.2393815
    [19] LIU Dang, LIU Xiaofeng, RHEE W, et al. A 19.2mW 1Gb/s secure proximity transceiver with ISI pre-correction and hysteresis energy detection[C]. 2016 IEEE Radio Frequency Integrated Circuits Symposium, San Francisco, USA, 2016.
    [20] BAO Dongxuan, ZOU Zhuo, NEJAD M B, et al. A wirelessly powered UWB RFID sensor tag with time-domain analog-to-information interface[J]. IEEE Journal of Solid-State Circuits, 2018, 53(8): 2227–2239. doi: 10.1109/JSSC.2018.2825455
    [21] ZOU Zhuo, MENDOZA D S, WANG Peng, et al. A low-power and flexible energy detection IR-UWB receiver for RFID and wireless sensor networks[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2011, 58(7): 1470–1482. doi: 10.1109/TCSI.2011.2142930
    [22] LEE G, PARK J, JANG J, et al. An IR-UWB CMOS transceiver for high-data-rate, low-power, and short-range communication[J]. IEEE Journal of Solid-State Circuits, 2019, 54(8): 2163–2174. doi: 10.1109/JSSC.2019.2914584
    [23] KIM N S and RABAEY J M. A 1Gb/s energy efficient triple-channel UWB-based cognitive radio[C]. 2015 Symposium on VLSI Circuits, Kyoto, Japan, 2015.
    [24] WENTZLOFF D D and CHANDRAKASAN A P. A 47pJ/pulse 3.1-to-5GHz all-digital UWB transmitter in 90nm CMOS[C]. 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, USA, 2008.
    [25] KO J and GHARPUREY R. A pulsed UWB transceiver in 65 nm CMOS with four-element beamforming for 1 Gbps meter-range WPAN applications[J]. IEEE Journal of Solid-State Circuits, 2016, 51(5): 1177–1187. doi: 10.1109/JSSC.2016.2520402
    [26] GUNTURI P, EMANETOGLU N W, and KOTECKI D E. A 250-Mb/s data rate IR-UWB transmitter using current-reused technique[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(11): 4255–4265. doi: 10.1109/TMTT.2017.2695189
    [27] ZHAO Mingjian, LI Bin, and WU Zhaohui. 20-pJ/pulse 250 Mbps low-complexity CMOS UWB transmitter for 3–5 GHz applications[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(3): 158–160. doi: 10.1109/LMWC.2013.2245412
    [28] 高吉. 超宽带脉冲雷达发射前端电路技术研究[D]. [硕士论文], 西安电子科技大学, 2019.

    GAO Ji. Research on transmitter front-end circuit technology of UWB pulsed radar[D]. [Master dissertation], Xidian University, 2019.
    [29] SIM S, KIM D W, and HONG S. A CMOS UWB pulse generator for 6–10 GHz applications[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(2): 83–85. doi: 10.1109/LMWC.2008.2011318
    [30] KOPTA V and ENZ C C. A 4-GHz low-power, multi-user approximate Zero-IF FM-UWB transceiver for IoT[J]. IEEE Journal of Solid-State Circuits, 2019, 54(9): 2462–2474. doi: 10.1109/JSSC.2019.2917837
    [31] LIU Maliang, XIAO Jinhai, LUO Peng, et al. Ultrawideband power-switchable transmitter with 17.7-dBm output power for see-through-wall radar[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(5): 1331–1335. doi: 10.1109/TVLSI.2020.2972687
    [32] YIN Yun, XIONG Liang, ZHU Yiting, et al. A compact dual-band digital Doherty power amplifier using parallel-combining transformer for cellular NB-IoT applications[C]. 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, USA, 2018.
    [33] LIU Yaohong, SHEELAVANT S, MERCURI M, et al. 9.3 A680 μW burst-chirp UWB radar transceiver for vital signs and occupancy sensing up to 15m distance[C]. 2019 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, USA, 2019: 166–168.
    [34] HAN H G, YU B G, and KIM T W. A 1.9-mm-precision 20-GHz direct-sampling receiver using time-extension method for indoor localization[J]. IEEE Journal of Solid-State Circuits, 2017, 52(6): 1509–1520. doi: 10.1109/JSSC.2017.2679068
    [35] PARK J, JANG J, LEE G, et al. A time domain artificial intelligence radar for hand gesture recognition using 33-GHz direct sampling[C]. 2019 Symposium on VLSI Circuits, Kyoto, Japan, 2019.
    [36] PARK P and KIM S. A continuous sweep-clock-based time-expansion impulse-radio radar[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2018, 65(9): 3049–3059. doi: 10.1109/TCSI.2018.2799986
    [37] KAO Y H and CHU T S. A direct-sampling pulsed time-of-flight radar with frequency-defined vernier digital-to-time converter in 65 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2015, 50(11): 2665–2677. doi: 10.1109/JSSC.2015.2472599
    [38] LAI C M, TAN K W, YU Liuyuan, et al. A UWB IR timed-array radar using time-shifted direct-sampling architecture[C]. 2012 Symposium on VLSI Circuits, Honolulu, USA, 2012.
    [39] TSENG S T, CHOU H C, HU B S, et al. Equivalent-time direct-sampling impulse-radio radar with rotatable cyclic vernier digital-to-time converter for wireless sensor network localization[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 485–508. doi: 10.1109/TMTT.2017.2718510
    [40] TSENG S T, KAO Y H, PENG C C, et al. A 65-nm CMOS low-power impulse radar system for human respiratory feature extraction and diagnosis on respiratory diseases[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(4): 1029–1041. doi: 10.1109/TMTT.2016.2536029
    [41] HJORTLAND H A, WISLAND D T, LANDE T S, et al. Thresholded samplers for UWB impulse radar[C]. 2007 IEEE International Symposium on Circuits and Systems, New Orleans, USA, 2007.
    [42] 陈龙. 超宽带脉冲雷达接收前端电路技术研究[D]. [硕士论文], 西安电子科技大学, 2019.

    CHEN Long. Research of ultra-wideband pulse radar receiver front-end circuit[D]. [Master dissertation], Xidian University, 2019.
    [43] LI Yubing, LI Xiuping, HUANG Zemeng, et al. A novel low-power notch-enhanced active filter for ultrawideband interferer rejected LNA[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(3): 1684–1697. doi: 10.1109/TMTT.2021.3053264
    [44] SEPIDBAND P and ENTESARI K. A CMOS wideband receiver resilient to out-of-band blockers using blocker detection and rejection[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(5): 2340–2355. doi: 10.1109/TMTT.2017.2783923
    [45] LI Nan, FENG Weiwei, and LI Xiuping. A CMOS 3–12-GHz ultrawideband low noise amplifier by dual-resonance network[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(4): 383–385. doi: 10.1109/LMWC.2017.2679203
    [46] PAN Zhijian, QIN Chuan, YE Zuochang, et al. Wideband inductorless low-power LNAs with Gm enhancement and noise-cancellation[J] IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(1): 26–38.
    [47] ZHANG Jiajun, ZHAO Dixian, and YOU Xiaohu. A 20-GHz 1.9-mW LNA Using gm -boost and current-reuse techniques in 65-nm CMOS for satellite communications[J]. IEEE Journal of Solid-State Circuits, 2020, 50(10): 2714–2723. doi: 10.1109/JSSC.2020.2995307
    [48] JANG J, OH J, KIM C Y, et al. A 79-GHz adaptive-gain and low-noise UWB radar receiver front-end in 65-nm CMOS[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(3): 859–867. doi: 10.1109/TMTT.2016.2523511
    [49] WANG Yong, LOU Liheng, CHEN Bo, et al. A 260-mW Ku-band FMCW transceiver for synthetic aperture radar sensor with 1.48-GHz bandwidth in 65-nm CMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(11): 4385–4399. doi: 10.1109/TMTT.2017.2700271
    [50] MIRBOZORGI S A, BAHRAMI H, SAWAN M, et al. A full-duplex wireless integrated transceiver for implant-to-air data communications[C]. 2015 IEEE Custom Integrated Circuits Conference, San Jose, USA, 2015: 1–4.
    [51] LIU Zhe, BOON C C, YU Xiaopeng, et al. A 0.061-mm2 1–11-GHz noise-canceling low-noise amplifier employing active feedforward with simultaneous current and noise reduction[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(6): 3093–3106. doi: 10.1109/TMTT.2021.3061290
    [52] BOZORG A and STASZEWSKI R B. A 0.02–4.5-GHz LN(T)A in 28-nm CMOS for 5G exploiting noise reduction and current reuse[J]. IEEE Journal of Solid-State Circuits, 2021, 56(2): 404–415. doi: 10.1109/JSSC.2020.3018680
  • 加载中
图(30) / 表(2)
计量
  • 文章访问数:  1440
  • HTML全文浏览量:  1365
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 修回日期:  2022-03-18
  • 录用日期:  2022-03-21
  • 网络出版日期:  2022-03-23
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回