高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多偏移距探地雷达数据的包络-波形反演

槐楠 曾昭发 李静 王卓

槐楠, 曾昭发, 李静, 王卓. 基于多偏移距探地雷达数据的包络-波形反演[J]. 电子与信息学报, 2022, 44(4): 1212-1221. doi: 10.11999/JEIT211078
引用本文: 槐楠, 曾昭发, 李静, 王卓. 基于多偏移距探地雷达数据的包络-波形反演[J]. 电子与信息学报, 2022, 44(4): 1212-1221. doi: 10.11999/JEIT211078
HUAI Nan, ZENG Zhaofa, LI Jing, WANG Zhuo. Envelope-waveform Inversion Based on Multi-offset Ground Penetrating Radar Data[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1212-1221. doi: 10.11999/JEIT211078
Citation: HUAI Nan, ZENG Zhaofa, LI Jing, WANG Zhuo. Envelope-waveform Inversion Based on Multi-offset Ground Penetrating Radar Data[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1212-1221. doi: 10.11999/JEIT211078

基于多偏移距探地雷达数据的包络-波形反演

doi: 10.11999/JEIT211078
基金项目: 国家自然科学基金(42174065),吉林省自然科学基金(20200201216JC),陕西地建-西安交大土地工程与人居环境技术创新中心开放基金(2021WHZ0080)
详细信息
    作者简介:

    槐楠:女,1991年生,讲师,研究方向为探地雷达全波形反演

    曾昭发:男,1966年生,教授,研究方向为探地雷达系统、数据处理与解释

    李静:男,1988年生,教授,研究方向为近地表地球物理成像

    王卓:女,1996年生,博士生,研究方向为冰雷达数据处理与解释

    通讯作者:

    曾昭发 zengzf@jlu.edu.cn

  • 中图分类号: TN911.7

Envelope-waveform Inversion Based on Multi-offset Ground Penetrating Radar Data

Funds: The National Natural Science Foundation of China (42174065), The Natural Science Foundation of Jilin Province (20200201216JC), The Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University (2021WHZ0080)
  • 摘要: 全波形反演(FWI)通过综合利用波场的运动学和动力学特征来实现对地下介质的高精度建模,是最具潜力的反演方法之一。目前,全波形反演仍面临诸多亟待解决的问题,最著名的就是初始模型依赖性问题。低频成分对于恢复长波背景速度结构进而构建初始模型至关重要,但是实际采集的探地雷达(GPR)数据中往往存在低频信息不足的情况,导致全波形反演难以获得理想的结果。为此,该文提出基于地面多偏移距雷达数据的包络-波形反演方法,利用包络波场携带低频信息的特征来构建大尺度背景模型,同时又实现了对小尺度弱扰动目标体的精细刻画。在原始记录低频成分缺失的情况下,通过与常规全波形反演方法进行对比表明:包络-波形反演方法能够有效重构缺失的低频成分,提高对地下大尺度背景构造和细节信息的成像效果。
  • 图  1  子波及其包络的波形与频谱信息

    图  2  3层结构介质模型

    图  3  3层结构介质模型的反演结果

    图  4  反演结果抽道对比

    图  5  第1个源对应的第1道探地雷达合成记录及其频谱

    图  6  低频缺失情况下模型的反演结果

    图  7  反演结果抽道对比

    图  8  添加噪声后模型的反演结果

    图  9  反演结果抽道对比

  • [1] KLEWE T, STRANGFELD C, and KRUSCHWITZ S. Review of moisture measurements in civil engineering with ground penetrating radar – applied methods and signal features[J]. Construction and Building Materials, 2021, 278: 122250. doi: 10.1016/j.conbuildmat.2021.122250
    [2] ŠIPOŠ D and GLEICH D. A lightweight and low-power UAV-borne ground penetrating radar design for landmine detection[J]. Sensors, 2020, 20(8): 2234. doi: 10.3390/s20082234
    [3] LOOMS M C, JENSEN K H, BINLEY A, et al. Monitoring unsaturated flow and transport using cross-borehole geophysical methods[J]. Vadose Zone Journal, 2008, 7(1): 227–237. doi: 10.2136/vzj2006.0129
    [4] LINDE N, BINLEY A, TRYGGVASON A, et al. Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data[J]. Water Resources Research, 2006, 42(12): W12404. doi: 10.1029/2006WR005131
    [5] IWASAKI K, TAMURA M, SATO H, et al. Application of ground-penetrating radar and a combined penetrometer-moisture probe for evaluating spatial distribution of soil moisture and soil hardness in coastal and inland windbreaks[J]. Geosciences, 2020, 10(6): 238. doi: 10.3390/geosciences10060238
    [6] GAO Peng, WANG Ruiyan, ZHAO Gengxing, et al. The application of GPR to the detection of soil wetted bodies formed by drip irrigation[J]. PLoS One, 2020, 15(7): e0235489. doi: 10.1371/journal.pone.0235489
    [7] CARCIONE J M. Ground radar simulation for archaeological applications[J]. Geophysical Prospecting, 1996, 44(5): 871–888. doi: 10.1111/j.1365-2478.1996.tb00178.x
    [8] WANG Zhuo, ZENG Zhaofa, and ZHANG Ling. Ground penetrating radar exploration at archaeological site in Shi Village, Xia County, Shanxi Province[C]. The 9th International Conference on Environmental and Engineering Geophysics, Changchun, China, 2020: 012117.
    [9] JACOB R W, TROP J M, and KOCHEL R G. Subsurface architecture of alpine icy debris fans: Integration of ground-penetrating radar and surface observations in Alaska and New Zealand[J]. Geomorphology, 2021, 375: 107544. doi: 10.1016/j.geomorph.2020.107544
    [10] DING Chunyu, XIAO Zhiyong, WU Bo, et al. Rock fragments in shallow lunar regolith: Constraints by the lunar penetrating radar onboard the Chang'E-4 mission[J]. Journal of Geophysical Research:Planets, 2021, 126(9): e2021JE006917. doi: 10.1029/2021JE006917
    [11] GIANNAKIS I, ZHOU Feng, WARREN C, et al. Inferring the shallow layered structure at the Chang’E-4 landing site: A novel interpretation approach using lunar penetrating radar[J]. Geophysical Research Letter, 2021, 48(16): e2021GL092866. doi: 10.1029/2021GL092866
    [12] LAVOUÉ F, BROSSIER R, MÉTIVIER L, et al. Two-dimensional permittivity and conductivity imaging by full waveform inversion of multioffset GPR data: A frequency-domain quasi-newton approach[J]. Geophysical Journal International, 2014, 197(1): 248–268. doi: 10.1093/gji/ggt528
    [13] FENG Xuan, REN Qianci, and LIU Cai. Quantitative imaging for civil engineering by joint full waveform inversion of surface-based GPR and shallow seismic reflection data[J]. Construction and Building Materials, 2017, 154: 1173–1182. doi: 10.1016/j.conbuildmat.2017.07.033
    [14] FENG Xuan, REN Qianci, LIU Cai, et al. Joint acoustic full-waveform inversion of crosshole seismic and ground-penetrating radar data in the frequency domain[J]. Geophysics, 2017, 82(6): H41–H56. doi: 10.1190/geo2016-0008.1
    [15] FENG Deshan, CAO Cen, and WANG Xun. Multiscale full-waveform dual-parameter inversion based on total variation regularization to on-ground GPR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9450–9465. doi: 10.1109/TGRS.2019.2926626
    [16] 王珣, 冯德山, 王向宇. 基于改进全变差正则化的GPR多尺度全波形双参数同步反演[J]. 地球物理学报, 2020, 63(12): 4485–4501. doi: 10.6038/cjg2020N0130

    WANG Xun, FENG Deshan, and WANG Xiangyu. GPR multiple-scale full waveform dual-parameter simultaneous inversion based on modified total variation regularization[J]. Chinese Journal of Geophysics, 2020, 63(12): 4485–4501. doi: 10.6038/cjg2020N0130
    [17] HUAI Nan, ZENG Zhaofa, LI Jing, et al. Model-based layer stripping FWI with a stepped inversion sequence for GPR data[J]. Geophysical Journal International, 2019, 218(2): 1032–1043. doi: 10.1093/gji/ggz210
    [18] VIRIEUX J and OPERTO S. An overview of full-waveform inversion in exploration geophysics[J]. Geophysics, 2009, 74(6): WCC1–WCC26. doi: 10.1190/1.3238367
    [19] BOZDAĞ E, TRAMPERT J, and TROMP J. Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements[J]. Geophysical Journal International, 2011, 185(2): 845–870. doi: 10.1111/j.1365-246X.2011.04970.x
    [20] CHI Benxin, DONG Liangguo, and LIU Yuzhu. Full waveform inversion based on envelope objective function[C]. The 75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013, London, UK, 2013: Tu-P04–09.
    [21] CHI Benxin, DONG Liangguo, and LIU Yuzhu. Full waveform inversion method using envelope objective function without low frequency data[J]. Journal of Applied Geophysics, 2014, 109: 36–46. doi: 10.1016/j.jappgeo.2014.07.010
    [22] WU Rushan, LUO Jingrui, and WU Bangyu. Ultra-low-frequency information in seismic data and envelope inversion[C]. SEG Technical Program Expanded Abstracts 2013, 2013: 3078–3082.
    [23] WU Rushan, LUO Jingrui, and WU Bangyu. Seismic envelope inversion and modulation signal model[J]. Geophysics, 2014, 79(3): WA13–WA24. doi: 10.1190/geo2013-0294.1
    [24] 刘新彤, 刘四新, 孟旭, 等. 低频缺失下跨孔雷达包络波形反演[J]. 吉林大学学报:地球科学版, 2018, 48(2): 474–482. doi: 10.13278/j.cnki.jjuese.20170281

    LIU Xintong, LIU Sixin, MENG Xu, et al. Envelope waveform inversion of cross-hole radar without low frequency data[J]. Journal of Jilin University:Earth Science Edition, 2018, 48(2): 474–482. doi: 10.13278/j.cnki.jjuese.20170281
    [25] BUNKS C, SALECK F M, ZALESKI S, et al. Multiscale seismic waveform inversion[J]. Geophysics, 1995, 60(5): 1457–1473. doi: 10.1190/1.1443880
    [26] BOONYASIRIWAT C, VALASEK P, ROUTH P, et al. An efficient multiscale method for time-domain waveform tomography[J]. Geophysics, 2009, 74(6): WCC59–WCC68. doi: 10.1190/1.3151869
    [27] MELES G A, GREENHALGH S, GREEN A, et al. GPR full-waveform sensitivity and resolution analysis using an FDTD adjoint method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1881–1896. doi: 10.1109/TGRS.2011.2170078
    [28] LI Jing, BAI Lige, and LIU Hai. Numerical verification of full waveform inversion for the Chang’E-5 lunar regolith penetrating array radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5903710. doi: 10.1109/TGRS.2021.3098104
    [29] PLESSIX R E. A review of the adjoint‐state method for computing the gradient of a functional with geophysical applications[J]. Geophysical Journal International, 2006, 167(2): 495–503. doi: 10.1111/j.1365-246X.2006.02978.x
    [30] CASTELLANOS C, ETIENNE V, HU Guanghui, et al. Algorithmic and methodological developments towards full waveform inversion in 3D elastic media[C]. SEG Technical Program Expanded Abstracts 2011, 2011: 2793–2798.
  • 加载中
图(9)
计量
  • 文章访问数:  826
  • HTML全文浏览量:  410
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2022-03-18
  • 录用日期:  2022-03-18
  • 网络出版日期:  2022-03-23
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回