高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生成对抗网络的舰船辐射噪声分类方法研究

李理 李向欣 殷敬伟

李理, 李向欣, 殷敬伟. 基于生成对抗网络的舰船辐射噪声分类方法研究[J]. 电子与信息学报, 2022, 44(6): 1974-1983. doi: 10.11999/JEIT211077
引用本文: 李理, 李向欣, 殷敬伟. 基于生成对抗网络的舰船辐射噪声分类方法研究[J]. 电子与信息学报, 2022, 44(6): 1974-1983. doi: 10.11999/JEIT211077
LI Li, LI Xiangxin, YIN Jingwei. Research on Classification Algorithm of Ship Radiated Noise Data Based on Generative Adversarial Network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1974-1983. doi: 10.11999/JEIT211077
Citation: LI Li, LI Xiangxin, YIN Jingwei. Research on Classification Algorithm of Ship Radiated Noise Data Based on Generative Adversarial Network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1974-1983. doi: 10.11999/JEIT211077

基于生成对抗网络的舰船辐射噪声分类方法研究

doi: 10.11999/JEIT211077
详细信息
    作者简介:

    李理:男,1987年生,讲师,研究方向为图像及语音信号处理机器学习、模式识别

    李向欣:男,1998年生,硕士生,研究方向为水声信号处理、机器学习

    殷敬伟:男,1980年生,教授,研究方向为水声通信及信号处理

    通讯作者:

    殷敬伟 yinjingwei@hrbeu.edu.cn

  • 中图分类号: TN929.3; TP181

Research on Classification Algorithm of Ship Radiated Noise Data Based on Generative Adversarial Network

  • 摘要: 基于机器学习的舰船目标识别近年来已成为水声信号处理领域的一个重要研究方向,但水声目标信号的获取困难,样本量不足和不均衡的问题很容易导致目标分类模型的识别效果不佳。该文提出一种基于条件卷积生成对抗网络的船舶噪声数据分类方法,该方法利用生成对抗学习理论,生成相比于传统数据增强算法非线性特征更强,特征差异更丰富的伪DEMON调制谱数据来缓解训练样本量不足的问题。之后将传统生成对抗网络中的全连层输出替换成更善于解决小样本问题集成分类器,从而降低分类器对于数据量的依赖程度,进一步提高分类模型性能。最终由基于真实样本的实验结果表明,相比于传统数据增强算法和卷积生成对抗网络,该文方法能够更有效提高在样本不足条件下的模型的分类性能。
  • 图  1  DEMON谱解调方法

    图  2  GAN基本结构

    图  3  模型整体框架

    图  4  DCGAN训练过程

    图  5  分类器结构

    图  6  水听器布放图

    图  7  舰船目标类型

    图  8  DEMON谱提取结果

    图  9  原始数据与生成数据对比

    图  10  生成的4种样本特征空间分布对比

    图  11  4类舰船数据真实样本与生成样本分布对比

    图  12  小样本下分类混淆矩阵

    图  13  使用SMOTE对数据扩充后混淆矩阵

    图  14  使用改进条件DCGAN扩充数据后混淆矩阵

    表  1  样本不均衡下分类结果(第4类样本不足)

    C1C2C3C4
    查准率0.910.930.880.60
    查全率0.950.890.920.43
    F10.940.910.910.57
    下载: 导出CSV

    表  2  使用常规DCGAN网络分类结果

    C1C2C3C4
    查准率0.930.950.810.78
    查全率0.980.640.950.88
    F10.960.770.880.82
    下载: 导出CSV

    表  3  使用SMOTE算法扩充样本+Stacking分类结果

    C1C2C3C4
    查准率0.870.900.860.94
    查全率0.930.930.970.87
    F10.900.920.910.90
    下载: 导出CSV

    表  4  使用改进的条件DCGAN分类结果

    C1C2C3C4
    查准率0.940.940.960.93
    查全率0.900.930.950.90
    F10.930.930.950.91
    下载: 导出CSV

    表  5  分类结果总体对比

    不均衡
    Stacking
    DCGAN
    (FC层输出)
    SMOTE
    Stacking
    cDCGAN
    Stacking
    查准率0.830.870.890.94
    查全率0.800.860.930.92
    F10.830.860.910.93
    下载: 导出CSV

    表  6  原始小样本数据集分类结果

    KNNRFSVMStacking
    查准率0.840.930.940.87
    查全率0.790.770.750.85
    F10.810.840.830.86
    下载: 导出CSV

    表  7  使用SMOTE对数据扩充后分类结果

    KNNRFSVMStacking
    查准率0.790.830.860.88
    查全率0.620.810.840.87
    F10.530.810.850.88
    下载: 导出CSV

    表  8  使用改进条件DCGAN对数据扩充后分类结果

    KNNRFSVMStacking
    查准率0.820.910.900.90
    查全率0.810.890.880.90
    F10.810.900.890.90
    下载: 导出CSV
  • [1] BIANCO M J, GERSTOFT P, TRAER J, et al. Machine learning in acoustics: Theory and applications[J]. The Journal of the Acoustical Society of America, 2019, 146(5): 3590–3628. doi: 10.1121/1.5133944
    [2] ÖZDEMIR A, POLAT K, and ALHUDHAIF A. Classification of imbalanced hyperspectral images using SMOTE-based deep learning methods[J]. Expert Systems with Applications, 2021, 178: 114986. doi: 10.1016/j.eswa.2021.114986
    [3] CUBUK E D, ZOPH B, MANE D, et al. AutoAugment: Learning augmentation policies from data[J]. arXiv. 1805.09501, 2018.
    [4] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [5] GAO Yingjie, CHEN Yuechao, WANG Fangyong, et al. Recognition method for underwater acoustic target based on DCGAN and DenseNet[C]. The 5th International Conference on Image, Vision and Computing (ICIVC), Beijing, China, 2020: 215–221.
    [6] LIU Jianshe, ZHU Guangping, and YIN Jingwei. Joint color spectrum and conditional generative adversarial network processing for underwater acoustic source ranging[J]. Applied Acoustics, 2021, 182: 108244. doi: 10.1016/j.apacoust.2021.108244
    [7] YANG Miao, HU Ke, DU Yixiang, et al. Underwater image enhancement based on conditional generative adversarial network[J]. Signal Processing:Image Communication, 2020, 81: 115723. doi: 10.1016/j.image.2019.115723
    [8] VAN HAARLEM M P, WISE M W, GUNST A W, et al. LOFAR: The low-frequency array[J]. Astronomy & Astrophysics, 2013, 556(A2): 53. doi: 10.1051/0004-6361/201220873
    [9] IWANA B K, FRINKEN V, and UCHIDA S. DTW-NN: A novel neural network for time series recognition using dynamic alignment between inputs and weights[J]. Knowledge-Based Systems, 2020, 188: 104971. doi: 10.1016/j.knosys.2019.104971
    [10] GAO Yujin, CAIN T, and COOPER P. Automatic detection of underwater propeller signals using cyclostationarity analysis[J]. Mechanical Systems and Signal Processing, 2021, 146: 107032. doi: 10.1016/j.ymssp.2020.107032
    [11] 韩雪, 朴胜春, 付金山. 舰船辐射噪声听觉节奏的时变响度特征提取[J]. 哈尔滨工程大学学报, 2020, 41(4): 487–492. doi: 10.11990/jheu.201904011

    HAN Xue, PIAO Shengchun, and FU Jinshan. Time-varying loudness feature extraction of the audition rhythm of ship radiation noise[J]. Journal of Harbin Engineering University, 2020, 41(4): 487–492. doi: 10.11990/jheu.201904011
    [12] 陈雪峰, 张中戈, 黄斌. 基于线谱和DEMON谱的水声目标分类[J]. 指挥信息系统与技术, 2019, 10(4): 61–65. doi: 10.15908/j.cnki.cist.2019.04.011

    CHEN Xuefeng, ZHANG Zhongge, and HUANG Bin. Classification for underwater acoustic targets based on line spectrum and DEMON spectrum[J]. Command Information System and Technology, 2019, 10(4): 61–65. doi: 10.15908/j.cnki.cist.2019.04.011
    [13] 梁俊杰, 韦舰晶, 蒋正锋. 生成对抗网络GAN综述[J]. 计算机科学与探索, 2020, 14(1): 1–17. doi: 10.3778/j.issn.1673-9418.1910026

    LIANG Junjie, WEI Jianjing, and JIANG Zhengfeng. Generative adversarial networks GAN overview[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 1–17. doi: 10.3778/j.issn.1673-9418.1910026
    [14] MIRZA M and OSINDERO S. Conditional generative adversarial nets[J]. arXiv: 1411.1784, 2014.
    [15] NAKANO F K, MASTELINI S M, BARBON S, et al. Stacking methods for hierarchical classification[C]. The 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 2017: 289–296.
    [16] ZHANG Hao, LI Jieling, LIU Ximeng, et al. Multi-dimensional feature fusion and stacking ensemble mechanism for network intrusion detection[J]. Future Generation Computer Systems, 2021, 122: 130–143. doi: 10.1016/j.future.2021.03.024
    [17] SANTOS-DOMÍNGUEZ D, TORRES-GUIJARRO S, CARDENAL-LÓPEZ A, et al. ShipsEar: An underwater vessel noise database[J]. Applied Acoustics, 2016, 113: 64–69. doi: 10.1016/j.apacoust.2016.06.008
    [18] DEVASSY B M and GEORGE S. Dimensionality reduction and visualisation of hyperspectral ink data using t-SNE[J]. Forensic Science International, 2020, 311: 110194. doi: 10.1016/j.forsciint.2020.110194
  • 加载中
图(14) / 表(8)
计量
  • 文章访问数:  817
  • HTML全文浏览量:  634
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2022-05-19
  • 录用日期:  2022-05-23
  • 网络出版日期:  2022-05-25
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回