高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多项式秘密共享的图像密文域可逆信息隐藏

张敏情 王泽曦 柯彦 孔咏骏 狄富强

张敏情, 王泽曦, 柯彦, 孔咏骏, 狄富强. 基于多项式秘密共享的图像密文域可逆信息隐藏[J]. 电子与信息学报, 2022, 44(12): 4337-4347. doi: 10.11999/JEIT211054
引用本文: 张敏情, 王泽曦, 柯彦, 孔咏骏, 狄富强. 基于多项式秘密共享的图像密文域可逆信息隐藏[J]. 电子与信息学报, 2022, 44(12): 4337-4347. doi: 10.11999/JEIT211054
ZHANG Minqing, WANG Zexi, KE Yan, KONG Yongjun, DI Fuqiang. Reversible Data Hiding in Encrypted Images Based on Polynomial Secret Sharing[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4337-4347. doi: 10.11999/JEIT211054
Citation: ZHANG Minqing, WANG Zexi, KE Yan, KONG Yongjun, DI Fuqiang. Reversible Data Hiding in Encrypted Images Based on Polynomial Secret Sharing[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4337-4347. doi: 10.11999/JEIT211054

基于多项式秘密共享的图像密文域可逆信息隐藏

doi: 10.11999/JEIT211054
基金项目: 国家自然科学基金(61872384, 62102450, 62102451)
详细信息
    作者简介:

    张敏情:女,教授,博士,研究方向为密码学、信息隐藏

    王泽曦:男,硕士生,研究方向为信息安全、信息隐藏

    柯彦:男,讲师,博士,研究方向为信息安全、密码学、信息隐藏

    孔咏骏:男,博士生,研究方向为信息安全、信息隐藏

    狄富强:男,讲师,博士,研究方向为信息安全、信息隐藏

    通讯作者:

    王泽曦 forever_study0518@163.com

  • 中图分类号: TN918.4; TP309.7

Reversible Data Hiding in Encrypted Images Based on Polynomial Secret Sharing

Funds: The National Natural Science Foundation of China (61872384, 62102450, 62102451)
  • 摘要: 针对密文域可逆信息隐藏在多用户场景下算法嵌入率低、载体图像容灾性能较弱等问题,该文提出一种基于多项式秘密共享的图像密文域可逆信息隐藏方案。通过将图像分割成多幅影子图像并存储在不同的用户端,可以增强图像的容灾性,为了实现额外信息在图像重构前后提取的可分离性,该方案包括两种嵌入算法:算法1在图像分割的过程中,将额外信息嵌入多项式的冗余系数中得到含有额外信息的影子图像,该算法支持在图像重构之后提取额外信息;算法2针对图像分割后的任一影子图像,利用秘密共享的加法同态特性实施嵌入,该算法支持直接从影子图像中提取额外信息。实验在不同门限方案和影子图像压缩率的条件下进行测试,当压缩率为50%时,(3, 4)门限方案的嵌入率达4.18 bpp(bit per pixel),(3, 5)门限方案的嵌入率达3.78 bpp。结果表明,两种嵌入算法分别支持从影子图像与重构图像中提取额外信息,实现了方案的可分离性;与现有方案相比,所提算法嵌入率较高、计算复杂度较低,具有较强的实用性。
  • 图  1  算法框架

    图  2  测试图像

    图  3  两次嵌入后含有额外信息的影子图像

    图  4  Lena重构图像及其直方图

    图  5  最大嵌入率对比

    图  6  额外信息嵌入前后密文图像不同方向相关性对比

    表  1  相关变量说明

    变量变量说明变量变量说明
    ${\boldsymbol{I}}$原始图像$ {\boldsymbol{K}}_{\text{s}}^{[i]},i = 1,2, \cdots ,n $用户共享密钥
    ${ {\boldsymbol{I} }_{\rm{e}}}$置乱图像${{\boldsymbol{K}}_{\text{a}}}$多项式嵌入时,额外信息隐藏密钥
    ${ {\boldsymbol{m} }_{{a} } }$多项式嵌入的额外信息${\boldsymbol{K} }_{{b} }^{[i]},i = 1,2, \cdots ,n$同态嵌入时,额外信息隐藏密钥
    ${ {\boldsymbol{m} }_{{b} } }$同态嵌入的额外信息${\boldsymbol{I}}_{{\text{ema}}}^{[i]},i = 1,2, \cdots ,n$包含额外信息的影子图像
    ${{\boldsymbol{K}}_{\text{e}}}$图像置乱密钥${\boldsymbol{I}}_{{\text{emb}}}^{[i]},i = 1,2, \cdots ,n$包含额外信息和标记信息的影子图像
    下载: 导出CSV

    表  2  译码表

    生成多项式${\boldsymbol{E}}$00000000000001000001000001000001000001000001000001000000
    ${q_1}(x) = {x^3} + x + 1$${{\boldsymbol{S}}_1}$000001010100011110111101
    $ {q_2}(x) = {x^3} + {x^2} + 1 $${{\boldsymbol{S}}_2}$000001010100101111011110
    下载: 导出CSV

    表  3  实际最大嵌入率

    最大嵌入率
    (bpp)
    n = 4n = 5n = 6n = 7
    w = 2w = 2w = 3w = 2w = 3w = 4w = 2w = 3w = 4w = 5
    k = 34.18183.7818\3.5152\\3.3247\\\
    k = 4\5.38183.78184.84853.5152\4.46753.3247\\
    k = 5\\\6.18184.84853.51525.61044.46753.3247\
    k = 6\\\\\\6.75325.61044.46753.3247
    下载: 导出CSV

    表  4  同态解密前后重构图像质量

    测试图像同态解密前重构密文图像同态解密前重构明文图像同态解密后重构明文图像
    PSNR(dB)信息熵PSNR(dB)信息熵PSNR(dB)信息熵
    Lena10.1661197.95529010.8700867.955290$ + \infty $7.218498
    Baboon10.5718637.95146611.1368167.951466$ + \infty $7.139099
    Boat9.6285717.92869510.4784547.928695$ + \infty $7.046737
    Goldhill9.6889187.96763110.3875937.967631$ + \infty $7.472315
    下载: 导出CSV

    表  5  信息嵌入前后含密影子图像安全性分析

    测试图像未嵌入信息的影子图像多项式嵌入后的影子图像同态嵌入后的影子图像
    信息熵NPCR(%)UACI(%)信息熵NPCR(%)UACI(%)信息熵
    Lena7.99858999.61719533.4237517.99861899.61147333.4339497.998648
    Baboon7.99851599.59983833.4125257.99859499.60193633.4027357.998660
    Boat7.99859199.60689533.4354287.99854499.60594233.4128687.998607
    Goldhill7.99855199.61929333.4764327.99850599.60823133.4591807.998645
    下载: 导出CSV

    表  6  不同算法特性对比

    算法算法框架加密方式时间复杂度密文扩展可分离性信息隐藏者
    文献[8]VRBE流密码$O(N)$1单用户
    文献[18]VRBE多秘密共享$O(N)$1单用户
    文献[25]VRBEPaillier$O({N^3})$128单用户
    文献[3]VRAE流密码$O(N)$1单用户
    文献[15]VRAEPaillier$O({N^3})$128单用户
    文献[17]VRAE秘密共享$O(N)$n单用户
    文献[20]VRAE秘密共享$O(N)$n多用户
    文献[13]VRIELWE$O({N^2})$16单用户
    文献[14]VRIE流密码$O(N)$1单用户
    本文算法VRIE秘密共享${\mathbf{O(N)}}$n/w多用户
    下载: 导出CSV
  • [1] SHI Yunqing, LI Xiaolong, ZHANG Xinpeng, et al. Reversible data hiding: Advances in the past two decades[J]. IEEE Access, 2016, 4: 3210–3237. doi: 10.1109/ACCESS.2016.2573308
    [2] PUECH W, CHAUMONT M, and STRAUSS O. A reversible data hiding method for encrypted images[C]. SPIE 6819, Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, San Jose, United States, 2008: 68191E.
    [3] ZHANG Xinpeng. Reversible data hiding in encrypted image[J]. IEEE Signal Processing Letters, 2011, 18(4): 255–258. doi: 10.1109/LSP.2011.2114651
    [4] ZHANG Xinpeng. Separable reversible data hiding in encrypted image[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2): 826–832. doi: 10.1109/TIFS.2011.2176120
    [5] CELIK M U, SHARMA G, TEKALP A M, et al. Lossless generalized-LSB data embedding[J]. IEEE Transactions on Image Processing, 2005, 14(2): 253–266. doi: 10.1109/TIP.2004.840686
    [6] CHEN C C, CHANG C C, and CHEN Kaimeng. High-capacity reversible data hiding in encrypted image based on huffman coding and differences of high nibbles of pixels[J]. Journal of Visual Communication and Image Representation, 2021, 76: 103060. doi: 10.1016/j.jvcir.2021.103060
    [7] THODI D M and RODRIGUEZ J J. Prediction-error based reversible watermarking[C]. 2004 International Conference on Image Processing, Singapore, 2004: 1549–1552.
    [8] PUTEAUX P and PUECH W. An efficient MSB prediction-based method for high-capacity reversible data hiding in encrypted images[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(7): 1670–1681. doi: 10.1109/TIFS.2018.2799381
    [9] WU Haotian, YANG Zhiyuan, CHEUNG Y M, et al. High-capacity reversible data hiding in encrypted images by bit plane partition and MSB prediction[J]. IEEE Access, 2019, 7: 62361–62371. doi: 10.1109/ACCESS.2019.2916355
    [10] WESTFELD A. F5—a steganographic algorithm: High capacity despite better steganalysis[C]. The 4th International Workshop on Information Hiding, Pittsburgh, USA, 2001: 289–302.
    [11] WU Haotian, CHEUNG Y M, YANG Zhiyuan, et al. A high-capacity reversible data hiding method for homomorphic encrypted images[J]. Journal of Visual Communication and Image Representation, 2019, 62: 87–96. doi: 10.1016/j.jvcir.2019.04.015
    [12] 张敏情, 柯彦, 苏婷婷. 基于LWE的密文域可逆信息隐藏[J]. 电子与信息学报, 2016, 38(2): 354–360. doi: 10.11999/JEIT150702

    ZHANG Minqing, KE Yan, and SU Tingting. Reversible steganography in encrypted domain based on LWE[J]. Journal of Electronics &Information Technology, 2016, 38(2): 354–360. doi: 10.11999/JEIT150702
    [13] KE Yan, ZHANG Minqing, LIU Jia, et al. A multilevel reversible data hiding scheme in encrypted domain based on LWE[J]. Journal of Visual Communication and Image Representation, 2018, 54: 133–144. doi: 10.1016/j.jvcir.2018.05.002
    [14] HUANG Delu and WANG Jianjun. High-capacity reversible data hiding in encrypted image based on specific encryption process[J]. Signal Processing Image Communication, 2020, 80: 115632. doi: 10.1016/j.image.2019.115632
    [15] CHEN Y C, SHIU C W, and HORNG G. Encrypted signal-based reversible data hiding with public key cryptosystem[J]. Journal of Visual Communication and Image Representation, 2014, 25(5): 1164–1170. doi: 10.1016/j.jvcir.2014.04.003
    [16] WU Xiaotian, CHEN Bing, and WENG Jian. Reversible data hiding for encrypted signals by homomorphic encryption and signal energy transfer[J]. Journal of Visual Communication and Image Representation, 2016, 41: 58–64. doi: 10.1016/j.jvcir.2016.09.005
    [17] WU Xiaotian, WENG Jian, and YAN Weiqi. Adopting secret sharing for reversible data hiding in encrypted images[J]. Signal Processing, 2018, 143: 269–281. doi: 10.1016/j.sigpro.2017.09.017
    [18] CHEN Yuchi, HUNG T H, HSIEH S H, et al. A new reversible data hiding in encrypted image based on multi-secret sharing and lightweight cryptographic algorithms[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(12): 3332–3343. doi: 10.1109/TIFS.2019.2914557
    [19] KE Yan, ZHANG Minqing, ZHANG Xinpeng, et al. A reversible data hiding scheme in encrypted domain for secret image sharing based on Chinese remainder theorem[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(4): 2469–2481. doi: 10.1109/TCSVT.2021.3081575
    [20] CHEN Bing, LU Wei, HUANG Jiwu, et al. Secret sharing based reversible data hiding in encrypted images with multiple data-hiders[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(2): 978–991. doi: 10.1109/TDSC.2020.3011923
    [21] SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612–613. doi: 10.1145/359168.359176
    [22] THIEN C C and LIN J C. Secret image sharing[J]. Computers & Graphics, 2002, 26(5): 765–770. doi: 10.1016/S0097-8493(02)00131-0
    [23] FRIDRICH J and SOUKAL D. Matrix embedding for large payloads[J]. IEEE Transactions on Information Forensics and Security, 2006, 1(3): 390–395. doi: 10.1109/TIFS.2006.879281
    [24] 邓晓衡, 廖春龙, 朱从旭, 等. 像素位置与比特双重置乱的图像混沌加密算法[J]. 通信学报, 2014, 35(3): 216–223. doi: 10.3969/j.issn.1000-436x.2014.03.025

    DENG Xiaoheng, LIAO Chunlong, ZHU Congxu, et al. Image encryption algorithms based on chaos through dual scrambling of pixel position and bit[J]. Journal on Communications, 2014, 35(3): 216–223. doi: 10.3969/j.issn.1000-436x.2014.03.025
    [25] ZHANG Xinpeng, LONG Jing, WANG Zichi, et al. Lossless and reversible data hiding in encrypted images with public-key cryptography[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(9): 1622–1631. doi: 10.1109/TCSVT.2015.2433194
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  895
  • HTML全文浏览量:  521
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2022-04-18
  • 录用日期:  2022-05-05
  • 网络出版日期:  2022-05-08
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回