高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于先验信噪比估计的超宽带穿墙雷达呼吸信号检测算法研究

潘俊 叶盛波 史城 倪志康 郑之杰 方广有

潘俊, 叶盛波, 史城, 倪志康, 郑之杰, 方广有. 基于先验信噪比估计的超宽带穿墙雷达呼吸信号检测算法研究[J]. 电子与信息学报, 2022, 44(4): 1241-1248. doi: 10.11999/JEIT211042
引用本文: 潘俊, 叶盛波, 史城, 倪志康, 郑之杰, 方广有. 基于先验信噪比估计的超宽带穿墙雷达呼吸信号检测算法研究[J]. 电子与信息学报, 2022, 44(4): 1241-1248. doi: 10.11999/JEIT211042
PAN Jun, YE Shengbo, SHI Cheng, NI Zhikang, ZHENG Zhijie, FANG Guangyou. Study on Respiration Signal Detection Algorithm of Ultra-WideBand Through-wall Radar Based on A Priori Signal-to-Noise Ratio Estimation[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1241-1248. doi: 10.11999/JEIT211042
Citation: PAN Jun, YE Shengbo, SHI Cheng, NI Zhikang, ZHENG Zhijie, FANG Guangyou. Study on Respiration Signal Detection Algorithm of Ultra-WideBand Through-wall Radar Based on A Priori Signal-to-Noise Ratio Estimation[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1241-1248. doi: 10.11999/JEIT211042

基于先验信噪比估计的超宽带穿墙雷达呼吸信号检测算法研究

doi: 10.11999/JEIT211042
基金项目: 国家自然科学基金(61827803),科技部重点研发计划(2018YFC0810200)
详细信息
    作者简介:

    潘俊:男,1994年生,博士生,研究方向为穿墙雷达目标检测与成像方法

    叶盛波:男,1983年生,研究员,硕士生导师,研究方向为超宽带雷达系统设计及微波信号处理与成像算法

    史城:男,1994年生,博士生,研究方向为超宽带雷达系统和信号处理技术

    倪志康:男,1995年生,博士生,研究方向为探地雷达信号处理和机器学习

    郑之杰:男,1997年生,博士生,研究方向为穿墙人体姿态估计和活动识别、深度学习和跨模态学习

    方广有:男,1963年生,研究员,博士生导师,研究方向为超宽带雷达成像理论与方法、探地雷达技术、地下资源电磁勘探技术、月球/火星探测雷达技术、超宽带天线理论与技术、左手材料、THz成像技术等

    通讯作者:

    方广有 gyfang@mail.ie.ac.cn

  • 中图分类号: TN957.52

Study on Respiration Signal Detection Algorithm of Ultra-WideBand Through-wall Radar Based on A Priori Signal-to-Noise Ratio Estimation

Funds: The National Natural Science Foundation of China (61827803), The Key R&D Program of the Ministry of Science and Technology (2018YFC0810200)
  • 摘要: 废墟下呼吸信号的检测对地震救援具有重要意义。在实际中,障碍物(如墙体)后的人体呼吸信号会被环境中的噪声所掩盖。如何提升穿墙呼吸信号的信噪比(SNR)仍是一项具有挑战性的工作。该文提出一种基于先验信噪比估计的检测算法,用于增强穿墙弱呼吸信号的输出SNR。该算法在谱减法中典型的决策导向(DD)算法基础上加入了自适应权重因子,通过降低先验信噪比的估计误差来进一步消除残余随机噪声。通过仿真和实验验证了所提出算法的性能。与传统的快速傅里叶变换(FFT)、奇异值分解(SVD)和DD检测算法相比,所提出的呼吸检测算法的输出SNR有所提高。
  • 图  1  呼吸检测算法的信号处理流程图

    图  2  仿真模型

    图  3  各算法的频率-距离结果

    图  4  不同输入SNR下4种算法的输出SNR

    图  5  穿墙人体呼吸检测实验场景

    图  6  各算法的实验结果

    图  7  频率-距离图像的投影结果

    表  1  不同墙体厚度下的输出SNR (dB)

    墙厚(m)
    0.120.240.37
    FFT算法12.1311.1010.06
    SVD算法18.9717.2814.37
    DD算法26.3423.3018.41
    所提算法32.8330.8027.67
    下载: 导出CSV

    表  2  UWB雷达参数

    参数参数值
    信号模式高斯脉冲
    中心频率500 MHz
    带宽500 MHz
    瞬时功率26 dBm
    快时间等效采样率16 GHz
    慢时间采样率13 Hz
    下载: 导出CSV

    表  3  两个静止目标的输出SNR (dB)

    目标
    目标1目标2
    FFT算法9.377.49
    SVD算法10.308.73
    DD算法14.8912.39
    所提算法21.6818.73
    下载: 导出CSV
  • [1] 晋良念, 欧阳缮, 周丽军. UWB MIMO穿墙雷达的阵列设计和成像方法[J]. 电子与信息学报, 2012, 34(7): 1574–1580. doi: 10.3724/SP.J.1146.2011.01113

    JIN Liangnian, OUYANG Shan, and ZHOU Lijun. Array design and imaging method for ultra-wideband multiple-input multiple-output through-the-wall radar[J]. Journal of Electronics &Information Technology, 2012, 34(7): 1574–1580. doi: 10.3724/SP.J.1146.2011.01113
    [2] 刘新, 阎焜, 杨光耀, 等. UWB-MIMO穿墙雷达三维成像与运动补偿算法研究[J]. 电子与信息学报, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356

    LIU Xin, YAN Kun, YANG Guangyao, et al. Study on 3D imaging and motion compensation algorithm for UWB-MIMO through-wall radar[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356
    [3] 李志, 金添, 周智敏. 超宽带虚拟孔径雷达非正交旁瓣抑制方法[J]. 电子与信息学报, 2012, 34(12): 2934–2941. doi: 10.3724/SP.J.1146.2012.00720

    LI Zhi, JIN Tian, and ZHOU Zhimin. Non-orthogonal Sidelobes reduction for virtual aperture UWB radar[J]. Journal of Electronics &Information Technology, 2012, 34(12): 2934–2941. doi: 10.3724/SP.J.1146.2012.00720
    [4] YAN Kun, WU Shiyou, and FANG Guangyou. Detection of quasi-static trapped human being using mono-static UWB life-detection radar[J]. Applied Sciences, 2021, 11(7): 3129. doi: 10.3390/app11073129
    [5] HARIKESH, CHAUHAN S S, BASU A, et al. Through the wall human subject localization and respiration rate detection using multichannel Doppler radar[J]. IEEE Sensors Journal, 2021, 21(2): 1510–1518. doi: 10.1109/JSEN.2020.3016755
    [6] ROHMAN B P A, ANDRA M B, and NISHIMOTO M. Through-the-wall human respiration detection using UWB impulse radar on hovering drone[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6572–6584. doi: 10.1109/JSTARS.2021.3087668
    [7] CAI Jiajia, ZHOU Hao, HUANG Weimin, et al. Ship detection and direction finding based on time-frequency analysis for compact HF radar[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1): 72–76. doi: 10.1109/LGRS.2020.2967387
    [8] SCHLEICHER B, NASR I, TRASSER A, et al. IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(5): 2076–2085. doi: 10.1109/TMTT.2013.2252185
    [9] 瑞泽, 熊明耀, 梁步阁. 穿墙雷达呼吸信号提取算法研究[J]. 电子技术, 2021, 50(7): 106–108.

    RUI Ze, XIONG Mingyao, and LIANG Buge. Study on algorithm of breathing signal extraction for through wall radar[J]. Electronic Technology, 2021, 50(7): 106–108.
    [10] LI Jing, LIU Lanbo, ZENG Zhaofa, et al. Advanced signal processing for vital sign extraction with applications in UWB radar detection of trapped victims in complex environments[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3): 783–791. doi: 10.1109/JSTARS.2013.2259801
    [11] WANG Kun, ZENG Zhaofa, and SUN Jiguang. Through-wall detection of the moving paths and vital signs of human beings[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(5): 717–721. doi: 10.1109/LGRS.2018.2881311
    [12] NEZIROVIC A, YAROVOY A G, and LIGTHART L P. Signal processing for improved detection of trapped victims using UWB radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2005–2014. doi: 10.1109/TGRS.2009.2036840
    [13] BOLL S. Suppression of acoustic noise in speech using spectral subtraction[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, 27(2): 113–120. doi: 10.1109/TASSP.1979.1163209
    [14] PLAPOUS C, MARRO C, and SCALART P. Improved signal-to-noise ratio estimation for speech enhancement[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(6): 2098–2108. doi: 10.1109/TASL.2006.872621
    [15] ALAM M, O’SHAUGHN ESSY D, and SELOUANI S. Speech enhancement based on novel two-step a priori SNR estimators[C]. INTERSPEECH 2008, 9th Annual Conference of the Ineternational Speech Commnication Association, Brisbane, Australia, 2008, 22–26.
    [16] SIM B L, TONG Y C, CHANG J S, et al. A parametric formulation of the generalized spectral subtraction method[J]. IEEE Transactions on Speech and Audio Processing, 1998, 6(4): 328–337. doi: 10.1109/89.701361
    [17] SHI Cheng, NI Zhikang, PAN Jun, et al. A method for reducing timing jitter’s impact in through-wall human detection by ultra-wideband impulse radar[J]. Remote Sensing, 2021, 13(18): 3577. doi: 10.3390/rs13183577
    [18] ROVŇAKOVá J and KOCUR D. Weak signal enhancement in radar signal processing[C]. 20th International Conference Radioelektronika 2010, Brno, Czech Republic, 2010: 1–4.
    [19] WARREN C, GIANNOPOULOS A, and GIANNAKIS I. GprMax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar[J]. Computer Physics Communications, 2016, 209: 163–170. doi: 10.1016/j.cpc.2016.08.020
    [20] WU Shiyou, TAN Kai, XIA Zhenghuan, et al. Improved human respiration detection method via ultra-wideband radar in through-wall or other similar conditions[J]. IET Radar, Sonar & Navigation, 2016, 10(3): 468–476. doi: 10.1049/iet-rsn.2015.0159
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  814
  • HTML全文浏览量:  441
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 修回日期:  2021-12-27
  • 录用日期:  2021-12-28
  • 网络出版日期:  2022-01-23
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回