高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合语义路径与语言模型的元学习知识推理框架

段立 封皓君 张碧莹 刘江舟 刘海潮

段立, 封皓君, 张碧莹, 刘江舟, 刘海潮. 融合语义路径与语言模型的元学习知识推理框架[J]. 电子与信息学报, 2022, 44(12): 4376-4383. doi: 10.11999/JEIT211034
引用本文: 段立, 封皓君, 张碧莹, 刘江舟, 刘海潮. 融合语义路径与语言模型的元学习知识推理框架[J]. 电子与信息学报, 2022, 44(12): 4376-4383. doi: 10.11999/JEIT211034
DUAN Li, FENG Haojun, ZHANG Biying, LIU Jiangzhou, LIU Haichao. A Meta-learning Knowledge Reasoning Framework Combining Semantic Path and Language Model[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4376-4383. doi: 10.11999/JEIT211034
Citation: DUAN Li, FENG Haojun, ZHANG Biying, LIU Jiangzhou, LIU Haichao. A Meta-learning Knowledge Reasoning Framework Combining Semantic Path and Language Model[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4376-4383. doi: 10.11999/JEIT211034

融合语义路径与语言模型的元学习知识推理框架

doi: 10.11999/JEIT211034
详细信息
    作者简介:

    段立:男,教授,研究方向为军事知识工程、信息融合

    封皓君:男,硕士生,研究方向为自然语言处理、人工智能

    张碧莹:女,硕士生,研究方向为军事知识工程、数据挖掘

    刘江舟:男,硕士生,研究方向为自然语言处理、推荐系统

    刘海潮:男,硕士生,研究方向为防空作战

    通讯作者:

    封皓君 realforiarty@foxmail.com

  • 中图分类号: TN912.3; TP391.1

A Meta-learning Knowledge Reasoning Framework Combining Semantic Path and Language Model

  • 摘要: 针对传统推理方法无法兼顾计算能力与可解释性,同时在小样本场景下难以实现知识的快速学习等问题,该文设计一款融合语义路径与双向Transformer编码(BERT)的模型无关元学习(MAML)推理框架,该框架由基训练和元训练两个阶段构成。基训练阶段,将图谱推理实例用语义路径表示,并代入BERT模型微调计算链接概率,离线保存推理经验;元训练阶段,该框架基于多种关系的基训练过程获得梯度元信息,实现初始权值优化,完成小样本下知识的快速学习。实验表明,基训练推理框架在链接预测与事实预测任务中多项指标高于平均水平,同时元学习框架可以实现部分小样本推理问题的快速收敛。
  • 图  1  MAML与传统训练方法对比

    图  2  语义路径表示方案

    图  3  基于BERT微调的推理框架设计

    图  4  基于MAML的推理框架设计

    图  5  基于图谱补全过程

    图  6  blv与准确率的关系

    图  7  不同方式下的损失变化曲线

    表  1  部分变量标识

    变量种类变量含义表示方式
    元素标识实体iEnti
    关系jRelj
    方向标识正向标识符[FWD]
    反向标识符[RVS]
    语义标识语义路径起始符[CLS]
    语义路径分隔符[SEP]
    下载: 导出CSV

    表  2  Task举例与表示

    Task#1 (配偶)
    Support<[CLS]王健林[FWD]配偶林宁[SEP]王健林[RVS]父亲王思聪[FWD]母亲林宁[SEP]>···
    Query<[CLS]约瑟夫·拜登[FWD]配偶吉尔·拜登[SEP]约瑟夫·拜登[RVS]父亲亨特·拜登[FWD]母亲吉尔·拜登[SEP]>···
    Task#2 (所属地区)
    Support<[CLS]江汉路[FWD]所属地区武汉[SEP]江汉路 [FWD]所属地区汉口[FWD]所属地区武汉[SEP]>···
    Query<[CLS]伊夫岛[FWD]所属地区普罗旺斯[SEP]伊夫岛 [FWD]所属地区马赛[FWD]所属地区普罗旺斯 [SEP]>···
    Task#3 (前型级)
    Support<[CLS]f-35战斗机[FWD]前型级YF-22[SEP]f-35战斗机[RVS]衍生型f-22战斗机[FWD]前型级YF-22 [SEP]> ···
    Query<[CLS]歼-16[FWD]前型级苏-27SK[SEP]歼-16 [FWD]前型级歼-11[FWD]前型级苏-27SK [SEP]>···
    Task#m
    下载: 导出CSV

    表  3  基础参数设定

    参数
    (BERT) 最大句子长度50(词)
    (BERT) 批处理数64(条)
    (BERT) 学习率5e-5
    (MAML) α0.01
    (MAML) β0.001
    下载: 导出CSV

    表  4  不同方案链接预测效果比较

    方案FB15K-237WN18RR人际关系图谱CN-DBpedia子集
    MRRMRHits@10MRRMRHits@10MRRMRHits@10MRRMRHits@10
    TransE0.2943570.4650.22633840.5010.428380.5230.2691630.482
    ComplEx0.2473390.4280.44052610.5100.440340.6000.3311320.525
    R-GCNs0.2480.4170.452320.6230.3081340.495
    KBGAN0.2780.4580.2140.4720.476320.5560.2991200.536
    ConvKB0.2433110.4210.24933240.5240.436260.6210.3241460.461
    VR-GCN0.2480.4320.468310.5660.2921430.531
    本文0.2883210.4430.28532010.5320.452310.5130.3151170.513
    下载: 导出CSV

    表  5  不同方案事实预测效果对比

    方案 FB15K-237WN18RR关系图谱DB子图
    TransE0.2770.2430.3100.203
    ComplEx0.3090.2100.4130.231
    R-GCNs0.2890.2550.3820.198
    KBGAN0.3130.2430.3690.228
    ConvKB0.3010.2410.4250.235
    VR-GCN0.3240.2360.4010.242
    本文0.3170.2890.4110.225
    下载: 导出CSV
  • [1] 马忠贵, 倪润宇, 余开航. 知识图谱的最新进展、关键技术和挑战[J]. 工程科学学报, 2020, 42(10): 1254–1266. doi: 10.13374/j.issn2095-9389.2020.02.28.001

    MA Zhonggui, NI Runyu, and YU Kaihang. Recent advances, key techniques and future challenges of knowledge graph[J]. Chinese Journal of Engineering, 2020, 42(10): 1254–1266. doi: 10.13374/j.issn2095-9389.2020.02.28.001
    [2] 官赛萍, 靳小龙, 贾岩涛, 等. 面向知识图谱的知识推理研究进展[J]. 软件学报, 2018, 29(10): 2966–2994. doi: 10.13328/j.cnki.jos.005551

    GUAN Saiping, JIN Xiaolong, JIA Yantao, et al. Knowledge reasoning over knowledge graph: A survey[J]. Journal of Software, 2018, 29(10): 2966–2994. doi: 10.13328/j.cnki.jos.005551
    [3] LAO Ni and COHEN W W. Relational retrieval using a combination of path-constrained random walks[J]. Machine Learning, 2010, 81(1): 53–67. doi: 10.1007/s10994-010-5205-8
    [4] YANG Fan, YANG Zhilin, and COHEN W W. Differentiable learning of logical rules for knowledge base completion[J]. arXiv: 1702.08367, 2017.
    [5] 康世泽, 吉立新, 张建朋. 一种基于图注意力网络的异质信息网络表示学习框架[J]. 电子与信息学报, 2021, 43(4): 915–922. doi: 10.11999/JEIT200034

    KANG Shize, JI Lixin, and ZHANG Jianpeng. Heterogeneous information network representation learning framework based on graph attention network[J]. Journal of Electronics &Information Technology, 2021, 43(4): 915–922. doi: 10.11999/JEIT200034
    [6] 刘藤, 陈恒, 李冠宇. 联合FOL规则的知识图谱表示学习方法[J]. 计算机工程与应用, 2021, 57(4): 100–107. doi: 10.3778/j.issn.1002-8331.1911-0436

    LIU Teng, CHEN Heng, and LI Guanyu. Knowledge graph representation learning method jointing FOL rules[J]. Computer Engineering and Applications, 2021, 57(4): 100–107. doi: 10.3778/j.issn.1002-8331.1911-0436
    [7] ZHANG Linli, LI Dewei, XI Yugeng, et al. Reinforcement learning with actor-critic for knowledge graph reasoning[J]. Science China Information Sciences, 2020, 63(6): 169101. doi: 10.1007/s11432-018-9820-3
    [8] WANG Heng, LI Shuangyin, PAN Rong, et al. Incorporating graph attention mechanism into knowledge graph reasoning based on deep reinforcement learning[C]. The 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 2019: 2623–2631.
    [9] 陈海旭, 周强, 刘学军. 一种结合路径信息和嵌入模型的知识推理方法[J]. 小型微型计算机系统, 2020, 41(6): 1147–1151. doi: 10.3969/j.issn.1000-1220.2020.06.005

    CHEN Haixu, ZHOU Qiang, and LIU Xuejun. Knowledge graph reasoning combining path information and embedding model[J]. Journal of Chinese Computer Systems, 2020, 41(6): 1147–1151. doi: 10.3969/j.issn.1000-1220.2020.06.005
    [10] LÜ Xin, GU Yuxian, HAN Xu, et al. Adapting meta knowledge graph information for multi-hop reasoning over few-shot relations[C]. The 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 2019: 3376–3381.
    [11] CHEN Mingyang, ZHANG Wen, ZHANG Wei, et al. Meta relational learning for few-shot link prediction in knowledge graphs[C]. The 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 2019: 4217–4226.
    [12] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, USA, 2019.
    [13] FINN C, ABBEEL P, and LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 1126–1135.
    [14] YANG Zhilin, DAI Zihang, YANG Yiming, et al. XLNet: Generalized autoregressive pretraining for language understanding[C]. The 33rd Conference on Neural Information Processing Systems, Vancouver, Canada, 2019.
    [15] SUN Yu, WANG Shuohuan, LI Yukun, et al. ERNIE: Enhanced representation through knowledge integration[J]. arXiv: 1904.09223, 2019.
    [16] SUN Chi, QIU Xipeng, XU Yige, et al. How to fine-tune BERT for text classification?[C]. The 18th China National Conference on Chinese Computational Linguistics, Kunming, China, 2019: 194–206.
    [17] 任进军, 王宁. 人工神经网络中损失函数的研究[J]. 甘肃高师学报, 2018, 23(2): 61–63. doi: 10.3969/j.issn.1008-9020.2018.02.019

    REN Jinjun and WANG Ning. Research on cost function in artificial neural network[J]. Journal of Gansu Normal Colleges, 2018, 23(2): 61–63. doi: 10.3969/j.issn.1008-9020.2018.02.019
    [18] BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 2787–2795.
    [19] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]. The 15th International Conference on The Semantic Web, Heraklion, Greece, 2018: 593–607.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  840
  • HTML全文浏览量:  485
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 修回日期:  2021-12-17
  • 录用日期:  2021-12-29
  • 网络出版日期:  2022-01-13
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回