高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的探地雷达二维剖面图像结构特征检测方法

王辉 欧阳缮 刘庆华 廖可非 周丽军

王辉, 欧阳缮, 刘庆华, 廖可非, 周丽军. 基于深度学习的探地雷达二维剖面图像结构特征检测方法[J]. 电子与信息学报, 2022, 44(4): 1284-1294. doi: 10.11999/JEIT211032
引用本文: 王辉, 欧阳缮, 刘庆华, 廖可非, 周丽军. 基于深度学习的探地雷达二维剖面图像结构特征检测方法[J]. 电子与信息学报, 2022, 44(4): 1284-1294. doi: 10.11999/JEIT211032
WANG Hui, OUYANG Shan, LIU Qinghua, LIAO Kefei, ZHOU Lijun. Structure Feature Detection Method for Ground Penetrating Radar Two-Dimensional Profile Image Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1284-1294. doi: 10.11999/JEIT211032
Citation: WANG Hui, OUYANG Shan, LIU Qinghua, LIAO Kefei, ZHOU Lijun. Structure Feature Detection Method for Ground Penetrating Radar Two-Dimensional Profile Image Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1284-1294. doi: 10.11999/JEIT211032

基于深度学习的探地雷达二维剖面图像结构特征检测方法

doi: 10.11999/JEIT211032
基金项目: 国家自然科学基金(61871425, 61861011, 61631019),广西创新驱动发展专项(桂科AA21077008),山西省交通运输厅科技项目(2019-1-18)
详细信息
    作者简介:

    王辉:男,1982年生,博士生,副教授,研究方向为探地雷达信号处理、深度学习

    欧阳缮:男,1960年生,博士,教授,博士生导师,研究方向为智能信息处理

    刘庆华:女,1973年生,博士,教授,硕士生导师,研究方向为智能信息处理、深度学习

    廖可非:男,1984年生,博士,副教授,硕士生导师,研究方向为探地雷达信号处理

    周丽军:女,1984年生,博士,高级工程师,研究方向为探地雷达信号处理

    通讯作者:

    欧阳缮 hmoysh@guet.edu.cn

  • 中图分类号: TN957.52

Structure Feature Detection Method for Ground Penetrating Radar Two-Dimensional Profile Image Based on Deep Learning

Funds: The National Natural Science Foundation of China (61871425, 61861011, 61631019), Guangxi Special Fund Project for Innovation-driven Development (GuikeAA21077008), Shanxi Transportation Department Projects (2019-1-18)
  • 摘要: 该文针对探地雷达(GPR) 2维剖面图像中目标特征提取困难及其识别精度较低等问题,采用深度学习方法来提取2维剖面图像中目标的特征双曲线。根据GPR工作的物理机制,设计了一种级联结构的卷积神经网络(CNN),先检测并去除回波数据中的直达波干扰信号,再利用CNN得到B扫描(B-SCAN)图像的特征图,并对特征信号进行分类识别以提取目标的特征双曲线。同时,为处理各种干扰信号影响目标特征双曲线结构完整性的问题,提出了一种基于方向引导的特征数据补全方法,提高了目标特征双曲线识别的准确率。与方向梯度直方图(HOG)算法、单级式目标检测(YOLOV3)算法和更快速的区域卷积神经网络(Faster RCNN)算法相比,在综合评价指标F上该文方法的检测结果是最优的。
  • 图  1  目标特征检测框架

    图  2  GPR反射测量模式及仿真2维剖面图像

    图  3  B-SCAN图像特征提取的级联CNN结构

    图  4  目标特征双曲线提取网络训练模型的损失曲线

    图  5  结构信息不完整的GPR B-SCAN特征双曲线示意图

    图  6  提取GPR B-SCAN图像的特征图

    图  7  目标双曲线特征数据补全

    图  8  B-SCAN图像中的目标特征双曲线检测结果对比

    图  9  不同算法的F均值统计结果

  • [1] PAMBUDI A D, FAUß M, AHMAD F, et al. Minimax robust landmine detection using forward-looking ground-penetrating radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 5032–5041. doi: 10.1109/TGRS.2020.2971956
    [2] EBRAHIM S M, MEDHAT N I, MANSOUR K K, et al. Examination of soil effect upon GPR detectability of landmine with different orientations[J]. NRIAG Journal of Astronomy and Geophysics, 2018, 7(1): 90–98. doi: 10.1016/j.nrjag.2017.12.004
    [3] 郝彤, 赵杰. 面向双曲线形态的探地雷达图像识别技术综述[J]. 电子学报, 2019, 47(6): 1366–1372. doi: 10.3969/j.issn.0372-2112.2019.06.025

    HAO Tong and ZHAO Jie. A brief review of the hyperbola signature recognition techniques for ground penetrating radar[J]. Acta Electronica Sinica, 2019, 47(6): 1366–1372. doi: 10.3969/j.issn.0372-2112.2019.06.025
    [4] 侯斐斐, 施荣华, 雷文太, 等. 面向探地雷达B-scan图像的目标检测算法综述[J]. 电子与信息学报, 2020, 42(1): 191–200. doi: 10.11999/JEIT190680

    HOU Feifei, SHI Ronghua, LEI Wentai, et al. A review of target detection algorithm for GPR B-scan processing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 191–200. doi: 10.11999/JEIT190680
    [5] LUO T X H, LAI W W L, CHANG R K W, et al. GPR imaging criteria[J]. Journal of Applied Geophysics, 2019, 165: 37–48. doi: 10.1016/j.jappgeo.2019.04.008
    [6] YANG Tianchun, DAI Shixin, DENG Hanyang, et al. Application research of GPR in quality detection of urban underground jacked pipes construction[J]. IOP Conference Series:Earth and Environmental Science, 2019, 295(4): 042069. doi: 10.1088/1755-1315/295/4/042069
    [7] FIROOZABADI R, MILLER E L, RAPPAPORT C M, et al. Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1): 104–117. doi: 10.1109/TGRS.2006.883462
    [8] MINET J, LAMBOT S, SLOB E C, et al. Soil surface water content estimation by full-waveform GPR signal inversion in the presence of thin layers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1138–1150. doi: 10.1109/TGRS.2009.2031907
    [9] CAPINERI L, GRANDE P, and TEMPLE J A G. Advanced image-processing technique for real-time interpretation of ground-penetrating radar images[J]. International Journal of Imaging Systems and Technology, 1998, 9(1): 51–59. doi: 10.1002/(SICI)1098-1098(1998)9:1<51::AID-IMA7>3.0.CO;2-Q
    [10] MAAS C and SCHMALZL J. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar[J]. Computers & Geosciences, 2013, 58: 116–125. doi: 10.1016/j.cageo.2013.04.012
    [11] TORRIONE P A, MORTON K D, SAKAGUCHI R, et al. Histograms of oriented gradients for landmine detection in ground-penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1539–1550. doi: 10.1109/TGRS.2013.2252016
    [12] FRIGUI H and GADER P. Detection and discrimination of land mines in ground-penetrating radar based on edge histogram descriptors and a possibilistic k-nearest neighbor classifier[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(1): 185–199. doi: 10.1109/TFUZZ.2008.2005249
    [13] PHAM M T and LEFÈVRE S. Buried object detection from B-scan ground penetrating radar data using Faster-RCNN[C]. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 6804–6807.
    [14] LEI Wentai, HOU Feifei, XI Jingchun, et al. Automatic hyperbola detection and fitting in GPR B-scan image[J]. Automation in Construction, 2019, 106: 102839. doi: 10.1016/j.autcon.2019.102839
    [15] 王辉, 欧阳缮, 廖可非, 等. 基于深度学习的GPR B-SCAN图像双曲线检测方法[J]. 电子学报, 2021, 49(5): 953–963. doi: 10.12263/DZXB.20200635

    WANG Hui, OUYANG Shan, LIAO Kefei, et al. GPR B-SCAN image hyperbola detection method based on deep learning[J]. Acta Electronica Sinica, 2021, 49(5): 953–963. doi: 10.12263/DZXB.20200635
    [16] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [17] 杨必胜, 宗泽亮, 陈驰, 等. 车载探地雷达地下目标实时探测法[J]. 测绘学报, 2020, 49(7): 874–882. doi: 10.11947/j.AGCS.2020.20190293

    YANG Bisheng, ZONG Zeliang, CHEN Chi, et al. Real time approach for underground objects detection from vehicle-borne ground penetrating radar[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 874–882. doi: 10.11947/j.AGCS.2020.20190293
    [18] REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL].https://arxiv.org/abs/1804.02767, 2018.
    [19] ZHANG Jun, YANG Xing, LI Weiguang, et al. Automatic detection of moisture damages in asphalt pavements from GPR data with deep CNN and IRS method[J]. Automation in Construction, 2020, 113: 103119. doi: 10.1016/j.autcon.2020.103119
    [20] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778.
    [21] REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525.
    [22] BRUNZELL H. Detection of shallowly buried objects using impulse radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 875–886. doi: 10.1109/36.752207
    [23] WARREN C, GIANNOPOULOS A, and GIANNAKIS I. gprMax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar[J]. Computer Physics Communications, 2016, 209: 163–170. doi: 10.1016/j.cpc.2016.08.020
    [24] DÉROBERT X and PAJEWSKI L. TU1208 open database of radargrams: The dataset of the IFSTTAR geophysical test site[J]. Remote Sensing, 2018, 10(4): 530. doi: 10.3390/rs10040530
  • 加载中
图(9)
计量
  • 文章访问数:  1018
  • HTML全文浏览量:  1256
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 修回日期:  2022-02-18
  • 录用日期:  2022-02-23
  • 网络出版日期:  2022-03-07
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回