高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速滑翔飞行器机动状态识别方法研究

张君彪 熊家军 兰旭辉 陈新 李凡

张君彪, 熊家军, 兰旭辉, 陈新, 李凡. 高超声速滑翔飞行器机动状态识别方法研究[J]. 电子与信息学报, 2022, 44(12): 4134-4143. doi: 10.11999/JEIT211009
引用本文: 张君彪, 熊家军, 兰旭辉, 陈新, 李凡. 高超声速滑翔飞行器机动状态识别方法研究[J]. 电子与信息学报, 2022, 44(12): 4134-4143. doi: 10.11999/JEIT211009
ZHANG Junbiao, XIONG Jiajun, LAN Xuhui, CHEN Xin, LI Fan. Research on Maneuvering State Recognition Method of Hypersonic Glide Vehicle[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4134-4143. doi: 10.11999/JEIT211009
Citation: ZHANG Junbiao, XIONG Jiajun, LAN Xuhui, CHEN Xin, LI Fan. Research on Maneuvering State Recognition Method of Hypersonic Glide Vehicle[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4134-4143. doi: 10.11999/JEIT211009

高超声速滑翔飞行器机动状态识别方法研究

doi: 10.11999/JEIT211009
基金项目: 军事类研究生资助课题(JY2019B138, JY2018A039)
详细信息
    作者简介:

    张君彪:男,博士生,研究方向为机动目标跟踪、轨迹预测

    熊家军:男,教授,博士生导师,研究方向为预警情报分析、数据融合

    通讯作者:

    张君彪 zhangjb95@126.com

  • 中图分类号: TN953; V277

Research on Maneuvering State Recognition Method of Hypersonic Glide Vehicle

Funds: The Military Postgraduate Funding Project of China (JY2019B138, JY2018A039)
  • 摘要: 高超声速滑翔飞行器(HGV)的迅猛发展改变了传统的作战样式,开辟了军事斗争的新领域。对HGV的机动状态进行识别可以为威胁评估、轨迹预测和防御决策提供有力支撑。为提高HGV机动状态识别精度,该文提出一种基于注意力机制的卷积长短时记忆网络识别模型(AT-ConvLSTM)。在对HGV进行机动建模和特性分析基础上,将HGV在空间的机动状态分为8类,构造了对应的特征识别参数,建立了包含不同初始条件和控制模式下HGV机动轨迹的轨迹库。推导了从雷达跟踪信息到特征识别参数的转换步骤,使用提出的状态识别模型对HGV机动轨迹的时空特征进行提取,并通过SoftMax分类器输出机动状态分类。最后,通过仿真实验对模型性能进行验证。结果表明,所提状态识别模型能够有效在线识别HGV机动状态,具有较好的实时性和准确性。
  • 图  1  HGV机动动作分类

    图  2  模型的准确率和损失变化曲线

    图  3  不同模型的训练结果

    图  4  典型HGV轨迹

    图  5  识别准确率堆叠直方图

    图  6  不同模型的平均耗时

    表  1  不同步长对应的模型训练结果

    时间步长精度(%)
    训练集精度验证集精度
    5092.3691.25
    10095.9794.68
    15096.1395.54
    20097.4196.32
    25098.5997.75
    30097.9897.04
    下载: 导出CSV

    表  2  模型精度对比

    网络模型精度(%)
    训练集精度验证集精度
    RNN80.5177.51
    LSTM86.1882.31
    CNN-LSTM97.3396.79
    ConvLSTM98.0697.41
    本文AT-ConvLSTM98.5997.75
    下载: 导出CSV

    表  3  模型识别准确率(%)

    轨迹CNN-LSTMConvLSTM本文AT-ConvLSTMLSTMRNN
    轨迹189.4490.0091.6788.8987.22
    轨迹290.0091.1192.7873.3366.67
    下载: 导出CSV

    表  4  模型识别准确率结果

    网络模型错误点数/总点数准确率(%)
    RNN18000/4320058.33
    LSTM12600/4320071.53
    CNN-LSTM4500/4320089.58
    ConvLSTM3600/4320091.66
    本文AT-ConvLSTM3300/4320092.36
    下载: 导出CSV
  • [1] 王国宏, 李岳峰, 于洪波, 等. 三维空间中高超声速目标修正三级Hough变换-检测前跟踪算法[J]. 电子与信息学报, 2018, 40(4): 890–897. doi: 10.11999/JEIT170622

    WANG Guohong, LI Yuefeng, YU Hongbo, et al. Modified triple-stage Hough transform track-before-detect algorithm in three-dimensional space for hypersonic target[J]. Journal of Electronics &Information Technology, 2018, 40(4): 890–897. doi: 10.11999/JEIT170622
    [2] 肖松, 谭贤四, 王红, 等. 地基雷达部署对探测临近空间高超声速目标影响研究[J]. 电子与信息学报, 2015, 37(7): 1723–1728. doi: 10.11999/JEIT141024

    XIAO Song, TAN Xiansi, WANG Hong, et al. Detection performance assessment of near-space hypersonic target based on ground-based radar[J]. Journal of Electronics &Information Technology, 2015, 37(7): 1723–1728. doi: 10.11999/JEIT141024
    [3] WANG Yongjun, DONG Jiang, LIU Xiaodong, et al. Identification and standardization of maneuvers based upon operational flight data[J]. Chinese Journal of Aeronautics, 2015, 28(1): 133–140. doi: 10.1016/j.cja.2014.12.026
    [4] MA Yanjun, ZHAO Shunyi, and HUANG Biao. Multiple-model state estimation based on Variational Bayesian inference[J]. IEEE Transactions on Automatic Control, 2019, 64(4): 1679–1685. doi: 10.1109/TAC.2018.2854897
    [5] 孟光磊, 张慧敏, 朴海音, 等. 自动化飞行训练评估中的战机机动动作识别[J]. 北京航空航天大学学报, 2020, 46(7): 1267–1274. doi: 10.13700/j.bh.1001-5965.2019.0445

    MENG Guanglei, ZHANG Huimin, PIAO Haiyin, et al. Recognition of fighter maneuver in automatic flight training evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1267–1274. doi: 10.13700/j.bh.1001-5965.2019.0445
    [6] 徐西蒙, 杨任农, 于洋, 等. 基于运动分解和H-SVM的空战目标机动识别[J]. 控制与决策, 2020, 35(5): 1265–1272. doi: 10.13195/j.kzyjc.2018.1210

    XU Ximeng, YANG Rennong, YU Yang, et al. Target maneuver recognition in air combat based on motion decomposition and H-SVM[J]. Control and Decision, 2020, 35(5): 1265–1272. doi: 10.13195/j.kzyjc.2018.1210
    [7] 熊邦书, 刘雨, 莫燕, 等. 基于SVM的直升机飞行状态识别[J]. 应用科学学报, 2016, 34(4): 469–474. doi: 10.3969/j.issn.0255-8297.2016.04.012

    XIONG Bangshu, LIU Yu, MO Yan, et al. Recognition of helicopter flight condition based on support vector machine[J]. Journal of Applied Sciences, 2016, 34(4): 469–474. doi: 10.3969/j.issn.0255-8297.2016.04.012
    [8] 张裕禄, 毕红葵, 叶泽浩, 等. 基于随机森林的HRGV滑翔段飞行状态识别[J]. 战术导弹技术, 2020(2): 1–8,21. doi: 10.16358/j.issn.1009-1300.2020.9.142

    ZHANG Yulu, BI Hongkui, YE Zehao, et al. Flight state recognition of HRGV glide section based on random forest[J]. Tactical Missile Technology, 2020(2): 1–8,21. doi: 10.16358/j.issn.1009-1300.2020.9.142
    [9] 周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39(11): 322468–322476. doi: 10.7527/S1000-6893.2018.22468

    ZHOU Wangwang, YAO Peiyang, ZHANG Jieyong, et al. Combat intention recognition for aerial targets based on deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 322468–322476. doi: 10.7527/S1000-6893.2018.22468
    [10] 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34–42. doi: 10.19721/j.cnki.1001-7372.2019.06.003

    JI Xuewu, FEI Cong, HE Xiangkun, et al. Intention recognition and trajectory prediction for vehicles using LSTM network[J]. China Journal of Highway and Transport, 2019, 32(6): 34–42. doi: 10.19721/j.cnki.1001-7372.2019.06.003
    [11] 贾镇泽, 樊晓光, 薛明浩, 等. 基于机动动作元的敌机战术机动在线识别方法[J]. 北京理工大学学报, 2018, 38(8): 820–827. doi: 10.15918/j.tbit1001-0645.2018.08.009

    JIA Zhenze, FAN Xiaoguang, XUE Minghao, et al. Online identification method for tactical maneuver of target based on air combat maneuver element[J]. Transactions of Beijing Institute of Technology, 2018, 38(8): 820–827. doi: 10.15918/j.tbit1001-0645.2018.08.009
    [12] ZHENG Tianyu, YAO Yu, HE Fenghua, et al. Active switching multiple model method for tracking a noncooperative gliding flight vehicle[J]. Science China Information Sciences, 2020, 63(9): 192202. doi: 10.1007/s11432-019-1515-2
    [13] FAUST O, SHENFIELD A, KAREEM M, et al. Automated detection of atrial fibrillation using long short-term memory network with RR interval signals[J]. Computers in Biology and Medicine, 2018, 102: 327–335. doi: 10.1016/j.compbiomed.2018.07.001
    [14] 张君彪, 熊家军, 兰旭辉, 等. 基于自适应滤波的高超声速滑翔目标三维跟踪算法[J]. 系统工程与电子技术, 2022, 44(2): 628–636. doi: 10.12305/j.issn.1001-506X.2022.02.33

    ZHANG Junbiao, XIONG Jiajun, LAN Xuhui, et al. 3D tracking algorithm of hypersonic gliding target based on adaptive filtering[J]. Systems Engineering and Electronics, 2022, 44(2): 628–636. doi: 10.12305/j.issn.1001-506X.2022.02.33
    [15] LI Guanghua, ZHANG Hongbo, and TANG Gguojian. Maneuver characteristics analysis for hypersonic glide vehicles[J]. Aerospace Science and Technology, 2015, 43: 321–328. doi: 10.1016/j.ast.2015.03.016
    [16] JOSHI A, SIVAN K, and AMMA S S. Predictor-corrector reentry guidance algorithm with path constraints for atmospheric entry vehicles[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1307–1318. doi: 10.2514/1.26306
    [17] 陈克俊, 刘鲁华, 孟云鹤. 远程火箭飞行动力学与制导[M]. 北京: 国防工业出版社, 2014: 146–156.

    CHEN Kejun, LIU Luhua, MENG Yunhe. Launch Vehicle Flight Dynamics and Guidance[M]. Beijing: National Defense Industry Press, 2014: 146–156.
    [18] 王璐璐, 秦玉亮, 王宏强, 等. 飞行器升阻比估计误差分析方法研究[J]. 雷达科学与技术, 2012, 10(2): 174–179,186. doi: 10.3969/j.issn.1672-2337.2012.02.011

    WANG Lulu, QIN Yuliang, WANG Hongqiang, et al. Study on vehicle lift-to-drag ratio estimation error analysis method[J]. Radar Science and Technology, 2012, 10(2): 174–179,186. doi: 10.3969/j.issn.1672-2337.2012.02.011
    [19] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [20] SAJJAD M, KHAN S, HUSSAIN T, et al. CNN-based anti-spoofing two-tier multi-factor authentication system[J]. Pattern Recognition Letters, 2019, 126: 123–131. doi: 10.1016/j.patrec.2018.02.015
    [21] HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
    [22] QING Xiangyun and NIU Yugang. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM[J]. Energy, 2018, 148: 461–468. doi: 10.1016/j.energy.2018.01.177
    [23] SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation Nowcasting[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 802–810.
    [24] CHEN Zhenghua, WU Min, ZHAO Rui, et al. Machine remaining useful life prediction via an attention-based deep learning approach[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2521–2531. doi: 10.1109/TIE.2020.2972443
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  817
  • HTML全文浏览量:  468
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2022-03-17
  • 网络出版日期:  2022-04-21
  • 刊出日期:  2022-12-10

目录

    /

    返回文章
    返回