高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应按需辅助的上肢镜像控制策略

李会军 胡珊珊 宋爱国

李会军, 胡珊珊, 宋爱国. 基于自适应按需辅助的上肢镜像控制策略[J]. 电子与信息学报, 2022, 44(2): 437-445. doi: 10.11999/JEIT211001
引用本文: 李会军, 胡珊珊, 宋爱国. 基于自适应按需辅助的上肢镜像控制策略[J]. 电子与信息学报, 2022, 44(2): 437-445. doi: 10.11999/JEIT211001
LI Huijun, HU Shanshan, SONG Aiguo. Adaptive Assist-as-needed Upper Limb Mirror Control Strategy[J]. Journal of Electronics & Information Technology, 2022, 44(2): 437-445. doi: 10.11999/JEIT211001
Citation: LI Huijun, HU Shanshan, SONG Aiguo. Adaptive Assist-as-needed Upper Limb Mirror Control Strategy[J]. Journal of Electronics & Information Technology, 2022, 44(2): 437-445. doi: 10.11999/JEIT211001

基于自适应按需辅助的上肢镜像控制策略

doi: 10.11999/JEIT211001
基金项目: 国家重点研发计划(2017YFB1303201)
详细信息
    作者简介:

    李会军:女,1976年生,教授,研究方向为康复机器人

    胡珊珊:女,1996年生,硕士生,研究方向为康复机器人

    宋爱国:男,1968年生,教授,研究方向为机器人力触觉传感器技术、空间机器人遥操作技术等

    通讯作者:

    李会军 lihuijun@seu.edu.cn

  • 中图分类号: TP242.6; TH89

Adaptive Assist-as-needed Upper Limb Mirror Control Strategy

Funds: The National Key Research and Development Plan (2017YFB1303201)
  • 摘要: 为了提高偏瘫患者在镜像康复训练过程中的主动性与系统抗干扰性,该文提出一种基于自适应按需辅助的上肢镜像控制策略。该策略主要包括镜像控制和自适应按需辅助控制两个模块,镜像模块采集健侧位置解算出患侧期望位置,与患侧实际位置比较得到位置偏差;按需辅助模块结合传统阻抗控制和一种患肢运动状态评估方法,自动实时调节对患肢的辅助力大小,以实现患肢主动力矩的最大化。该文设计了两项实验,分别验证本策略对患者主动性和系统抗干扰性的提升效果,实验结果表明,对于镜像康复训练系统使用所提方法有效减小了56.9%的平均辅助力,患肢跟随健肢的位置精度为5.6%,能有效补偿89%的干扰外力。因此所提方法有效提升了训练者的主动性,同时具有良好的抗干扰性,满足镜像康复训练的要求。
  • 图  1  自适应按需辅助镜像控制策略架构

    图  2  镜像控制系统

    图  3  运动状态评估框图

    图  4  实验现场

    图  5  虚拟场景

    图  6  患肢主动性验证实验结果

    图  7  系统抗干扰性验证实验结果

    表  1  实验方案

    实验者采用方法实验条件实验目的实验次数
    实验1A/B/C/D传统方法/本文方法分别模拟2类不同患肢状态比较两种方法控制性能6
    实验2B/D传统方法/本文方法持续1s的10N外力干扰比较两种方法抗干扰性能6
    下载: 导出CSV

    表  2  患肢主动性验证实验结果

    受试者患肢状态采用方法平均辅助力(N)辅助力降低率(%)平均跟随误差(mm)位置精度(%)
    A/C$ {\rm{SFR}} > 0.7,{\rm{TOR}} > 0.7 $
    $ {\rm{SFR}} > 0.7,{\rm{TOR}} > 0.7 $
    传统方法7.856.944.311.1
    本文方法4.927.56.9
    B/D$ {\rm{SFR}} < 0.3,{\rm{TOR}} < 0.3 $传统方法6.428.87.1
    $ {\rm{SFR}} < 0.3,{\rm{TOR}} < 0.3 $本文方法1.517.44.3
    下载: 导出CSV

    表  3  系统抗干扰性验证实验结果

    患肢状态采用方法干扰外力(N)辅助力变化(N)辅助力补偿率(%)平均跟随误差(mm)误差增加率(%)
    ${\rm{SFR}} < 0.3,{\rm{TOR}} < 0.3$传统方法100.4440.339.9
    ${\rm{SFR}} < 0.3,{\rm{TOR}}< 0.3$本文方法10–8.98918.66.5
    下载: 导出CSV
  • [1] 马玉萍, 闫晓洁, 李晓华, 等. 针刺结合康复训练对脑卒中偏瘫患者肢体运动功能及生活质量的影响[J]. 中国老年学杂志, 2020, 40(1): 25–28. doi: 10.3969/j.issn.1005-9202.2020.01.009

    MA Yuping, YAN Xiaojie, LI Xiaohua, et al. Effects of acupuncture combined with rehabilitation training on motor function and quality of life of stroke patients with hemiplegia[J]. Chinese Journal of Gerontology, 2020, 40(1): 25–28. doi: 10.3969/j.issn.1005-9202.2020.01.009
    [2] CHENG Gaoxin, XU Linsen, XU Jiajun, et al. Robotic mirror therapy system for lower limb rehabilitation[J]. Industrial Robot, 2020, 48(2): 221–232. doi: 10.1108/IR-06-2020-0112
    [3] 荣积峰, 丁力, 张雯, 等. 康复机器人结合镜像疗法对脑卒中偏瘫患者上肢功能的效果[J]. 中国康复理论与实践, 2019, 25(6): 709–713. doi: 10.3969/j.issn.1006-9771.2019.06.016

    RONG Jifeng, DING Li, ZHANG Wen, et al. Effects of robot-assisted therapy combined with mirror therapy on upper limbs rehabilitation in patients with hemiplegia after stroke[J]. Chinese Journal of Rehabilitation Theory and Practice, 2019, 25(6): 709–713. doi: 10.3969/j.issn.1006-9771.2019.06.016
    [4] 陈臻, 刘佳敏, 陆晓, 等. 镜像康复机器人在偏瘫康复中的应用研究[J]. 中国康复医学杂志, 2020, 35(8): 903–906. doi: 10.3969/j.issn.1001-1242.2020.08.003

    CHEN Zhen, LIU Jiamin, LU Xiao, et al. Application research of mirror rehabilitation robot in hemiplegia rehabilitation[J]. Chinese Journal of Rehabilitation Medicine, 2020, 35(8): 903–906. doi: 10.3969/j.issn.1001-1242.2020.08.003
    [5] KLINKWAN P, KONGMAROENG C, MUENGTAWEEPONGSA S, et al. The effectiveness of mirror therapy to upper extremity rehabilitation in acute stroke patients[J]. Applied Science and Engineering Progress, To be published.
    [6] ZHANG Yuqian, XING Ying, LI Congqin, et al. Mirror therapy for unilateral neglect after stroke: A systematic review[J]. European Journal of Neurology, 2021, 29(1): 358–371. doi: 10.1111/ene.15122
    [7] WANG Weiwen and FU Lichen. Mirror therapy with an exoskeleton upper-limb robot based on IMU measurement system[C]. 2011 IEEE International Symposium on Medical Measurements and Applications, Bari, Italy, 2011.
    [8] SHAHBAZI M, ATASHZAR S F, TAVAKOLI M, et al. Therapist-in-the-Loop robotics-assisted mirror rehabilitation therapy: An Assist-as-Needed framework[C]. IEEE International Conference on Robotics and Automation, Seattle, USA, 2015.
    [9] 瞿畅, 吴炳, 陈厚军, 等. 体感控制的上肢外骨骼镜像康复机器人系统[J]. 中国机械工程, 2018, 29(20): 2484–2489. doi: 10.3969/j.issn.1004-132X.2018.20.014

    QU Chang, WU Bing, CHEN Houjun, et al. Upper-limb exoskeletal mirror rehabilitation robot systems based on motion sensing control[J]. China Mechanical Engineering, 2018, 29(20): 2484–2489. doi: 10.3969/j.issn.1004-132X.2018.20.014
    [10] HOGAN N, KREBS H I, ROHRER B, et al. Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery[J]. Journal of Rehabilitation Research & Development, 2006, 43(5): 605. doi: 10.1682/JRRD.2005.06.0103
    [11] WARRAICH Z and KLEIM J A. Neural plasticity: The biological substrate for neurorehabilitation[J]. PM&R, 2010, 2(Suppl 12): S208–S219.
    [12] 赵兴景, 朱杰, 罗翔. 自抗扰技术在下肢康复训练器中的应用[J]. 东南大学学报:自然科学版, 2019, 49(6): 1026–1032. doi: 10.3969/j.issn.1001-0505.2019.06.002

    ZHAO Xingjing, ZHU Jie, LUO Xiang. Application of ADRC in lower limb rehabilitation training apparatus[J]. Journal of Southeast University:Natural Science Edition, 2019, 49(6): 1026–1032. doi: 10.3969/j.issn.1001-0505.2019.06.002
    [13] 周秦源, 邵晨阳, 邵念锋, 等. 基于滑模阻抗的双足机器人单腿柔顺性控制研究[J]. 传感器与微系统, 2021, 40(4): 26–28,32. doi: 10.13873/J.1000-9787(2021)04-0026-03

    ZHOU Qinyuan, SHAO Chenyang, SHAO Nianfeng, et al. Research on one-leg flexibility control of biped robot based on sliding mode impedance[J]. Transducer and Microsystem Technologies, 2021, 40(4): 26–28,32. doi: 10.13873/J.1000-9787(2021)04-0026-03
    [14] 赵太飞, 宫春杰, 张港, 等. 一种无人机集群安全高效的分区集结控制策略[J]. 电子与信息学报, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601

    ZHAO Taifei, GONG Chunjie, ZHANG Gang, et al. A safe and high efficiency control strategy of unmanned aerial vehicles partition rendezvous[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601
    [15] 李根生, 佀国宁, 徐飞. 下肢外骨骼机器人控制策略研究进展[J]. 中国康复医学杂志, 2018, 33(12): 1488–1494. doi: 10.3969/j.issn.1001-1242.2018.12.025

    LI Gensheng, SI Guoning, and XU Fei. Research progress on control strategies of lower extremity exoskeleton robots[J]. Chinese Journal of Rehabilitation Medicine, 2018, 33(12): 1488–1494. doi: 10.3969/j.issn.1001-1242.2018.12.025
    [16] 王嘉津, 左国坤, 张佳楫, 等. 腕功能康复机器人按需辅助控制策略研究[J]. 生物医学工程学杂志, 2020, 37(1): 129–135. doi: 10.7507/1001-5515.201902023

    WANG Jiajin, ZUO Guokun, ZHANG Jiaji, et al. Research on assist-as-needed control strategy of wrist function-rehabilitation robot[J]. Journal of Biomedical Engineering, 2020, 37(1): 129–135. doi: 10.7507/1001-5515.201902023
    [17] PEHLIVAN A U, LOSEY D P, and O'MALLEY M K. Minimal assist-as-needed controller for upper limb robotic rehabilitation[J]. IEEE Transactions on Robotics, 2016, 32(1): 113–124. doi: 10.1109/TRO.2015.2503726
    [18] LUO Lincong, PENG Liang, WANG Chen, et al. A greedy assist-as-needed controller for upper limb rehabilitation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3433–3443. doi: 10.1109/TNNLS.2019.2892157
    [19] 欧阳云霞, 李会军, 宋爱国. 交互式自解耦桌面康复训练机器人系统[J]. 仪器仪表学报, 2021, 42(2): 171–179.

    OUYANG Yunxia, LI Huijun, and SONG Aiguo. Interactive self-decoupling desktop rehabilitation training robot system[J]. Chinese Journal of Scientific Instrument, 2021, 42(2): 171–179.
    [20] 秦超龙, 宋爱国, 吴常铖, 等. 基于Unity3D与Kinect的康复训练机器人情景交互系统[J]. 仪器仪表学报, 2017, 38(3): 530–536. doi: 10.3969/j.issn.0254-3087.2017.03.003

    QIN Chaolong, SONG Aiguo, WU Changcheng, et al. Scenario interaction system of rehabilitation training robot based on Unity3D and Kinect[J]. Chinese Journal of Scientific Instrument, 2017, 38(3): 530–536. doi: 10.3969/j.issn.0254-3087.2017.03.003
    [21] 秦欢欢, 宋爱国, 莫依婷, 等. 带有双手力觉反馈的人机交互系统设计[J]. 仪器仪表学报, 2018, 39(7): 66–73. doi: 10.19650/j.cnki.cjsi.J1803373

    QIN Huanhuan, SONG Aiguo, MO Yiting, et al. Design of human-machine system with two-handed force feedback[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 66–73. doi: 10.19650/j.cnki.cjsi.J1803373
    [22] 潘礼正, 宋爱国, 徐国政, 等. 上肢康复机器人实时安全控制[J]. 机器人, 2012, 34(2): 197–203,210. doi: 10.3724/SP.J.1218.2012.00197

    PAN Lizheng, SONG Aiguo, XU Guozheng, et al. Real-time safety control of upper-limb rehabilitation robot[J]. Robot, 2012, 34(2): 197–203,210. doi: 10.3724/SP.J.1218.2012.00197
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  751
  • HTML全文浏览量:  343
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 修回日期:  2022-01-18
  • 录用日期:  2022-01-20
  • 网络出版日期:  2022-01-22
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回