高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滑动时间窗的雷达脉冲列分选方法

刘严 郭福成

刘严, 郭福成. 基于滑动时间窗的雷达脉冲列分选方法[J]. 电子与信息学报, 2022, 44(11): 3900-3909. doi: 10.11999/JEIT210982
引用本文: 刘严, 郭福成. 基于滑动时间窗的雷达脉冲列分选方法[J]. 电子与信息学报, 2022, 44(11): 3900-3909. doi: 10.11999/JEIT210982
LIU Yan, GUO Fucheng. Deinterleaving Radar Pulse Trains with Sliding Time Windows[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3900-3909. doi: 10.11999/JEIT210982
Citation: LIU Yan, GUO Fucheng. Deinterleaving Radar Pulse Trains with Sliding Time Windows[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3900-3909. doi: 10.11999/JEIT210982

基于滑动时间窗的雷达脉冲列分选方法

doi: 10.11999/JEIT210982
基金项目: 湖南省创新研究群体项目(2019JJ10004)
详细信息
    作者简介:

    刘严:女,1987年生,博士生,研究方向为无源定位技术

    郭福成:男,1975年生,教授,研究方向为无源定位技术、雷达/通信信号处理

    通讯作者:

    刘严 liuyan_0701@qq.com

  • 中图分类号: TN971

Deinterleaving Radar Pulse Trains with Sliding Time Windows

Funds: The Provincial Innovation Research Group of Hunan(2019JJ10004)
  • 摘要: 电磁空间中大量存在着相互交错的固定重频雷达脉冲列,例如海面大量舰船发射的导航雷达信号、机载脉冲多普勒雷达在不同时段发射的相干脉冲列等。这些脉冲列以时间片段的形式存在,电子侦察分析系统无法事先确定其起止时刻,给这类雷达的重频参数估计和脉冲分选造成了较大困难。该文首先分析脉冲列的短持续时间特性给传统脉冲分选方法性能造成的负面影响,然后引入滑动时间窗思想来削弱这一影响,并据此提出脉冲重频间隔(PRI)高精度估计和脉冲分选方法。仿真结果验证了新方法的重频参数估计和脉冲分选性能。
  • 图  1  滑动时间窗中的脉冲对位置分布

    图  3  单个时窗内脉冲列的相位域观测值分布情况

    图  2  典型场景中不同重频参数估计方法的PRI谱

    图  4  雷达脉冲分选正确率和重频参数估计精度随漏脉冲率变化情况

    图  5  雷达脉冲分选正确率和重频参数估计精度随交错雷达数目变化情况

  • [1] WILEY R G, 吕跃广, 译. 电子情报(ELINT): 雷达信号截获与分析[M]. 北京: 电子工业出版社, 2008: 242–255.

    WILEY R G, LV Yueguang, translation. ELINT: The Interception and Analysis of Radar Signals[M]. Beijing: Publishing House of Electronics Industry, 2008: 242–255.
    [2] 赵国庆. 雷达对抗原理[M]. 2版. 西安: 西安电子科技大学出版社, 2012: 100–107.

    ZHAO Guoqing. Principle of Radar Countermeasure[M]. 2nd ed. Xi’an: Xidian University Press, 2012: 100–107.
    [3] 周一宇, 安玮, 郭福成, 等. 电子对抗原理与技术[M]. 北京: 电子工业出版社, 2014: 93–125.

    ZHOU Yiyu, AN Wei, GUO Fucheng, et al. Principles and Technologies of Electronic Warfare System[M]. Beijing: Publishing House of Electronics Industry, 2014: 93–125.
    [4] 贺平. 雷达对抗原理[M]. 北京: 国防工业出版社, 2016: 88–108.

    HE Ping. Radar Countermeasure Principle[M]. Beijing: National Defense Industry Press, 2016: 88–108.
    [5] 何明浩, 韩俊. 现代雷达辐射源信号分选与识别[M]. 北京: 科学出版社, 2016: 32–48.

    HE Minghao and HAN Jun. Signal Sorting and Recognition of Modern Radar Emitter[M]. Beijing: Science Press, 2016: 32–48.
    [6] 胡德秀, 赵拥军, 陈世文, 等. 雷达辐射源信号分析与处理[M]. 北京: 清华大学出版社, 2019: 15–17.

    HU Dexiu, ZHAO Yongjun, CHEN Shiwen, et al. Signal Analysis and Processing of Radar Emitter[M]. Beijing: Tsinghua University Press, 2019: 15–17.
    [7] 隋金坪, 刘振, 刘丽, 等. 雷达辐射源信号分选研究进展[J/OL]. 雷达学报, 2022, 11(3): 418–433.

    SUI Jinping, LIU Zhen, LIU Li, et al. Progress in radar emitter signal deinterleaving[J/OL]. Journal of Radars, 2022, 11(3): 418–433.
    [8] 赵登平. 世界海用雷达手册[M]. 2版. 北京: 国防工业出版社, 2012: 257–259.

    ZHAO Dengping. Handbook of World Marine Radar[M]. 2nd ed. Beijing: National Defense Industry Press, 2012: 257–259.
    [9] 姜道安, 石荣. 航天电子侦察技术[M]. 北京: 国防工业出版社, 2016: 105–108.

    JIANG Daoan and SHI Rong. Aerospace Electronic Reconnaissance Technique[M]. Beijing: National Defense Industry Press, 2016: 105–108.
    [10] 中航工业雷达与电子设备研究院. 机载雷达手册[M]. 4版. 北京: 国防工业出版社, 2013: 136.

    AVIC Radar and Electronic Equipment Research Institute. Airborne Radar Handbook[M]. 4th ed. Beijing: National Defense Industry Press, 2013: 136.
    [11] SKOLNIK M I, 南京电子技术研究所, 译. 雷达手册[M]. 3版. 北京: 电子工业出版社, 2010: 53–56.

    SKOLNIK M I, Nanjing Institute of Electronic Technology, translation. Radar Handbook[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2010: 53–56.
    [12] 张锡祥, 肖开奇, 顾杰. 新体制雷达对抗导论[M]. 北京: 北京理工大学出版社, 2010: 103–106.

    ZHANG Xixiang, XIAO Kaiqi, and GU Jie. Introduction to New System Radar Countermeasure[M]. Beijing: Beijing University of Technology Press, 2010: 103–106.
    [13] MELVIN W L and SCHEER J A. Principles of Modern Radar: Advanced Techniques[M]. Edison, NJ: SciTech Publishing, 2013: 231–234.
    [14] MELVIN W L and SCHEER J A. Principles of Modern Radar: Radar Applications[M]. Edison, NJ: SciTech Publishing, 2014: 204–206.
    [15] RICHARDS M A, SCHEER J A, and HOLM W A. Principles of Modern Radar: Basic Principles[M]. Edison, NJ: SciTech Publishing, 2010: 634–637.
    [16] MARDIA H K. New techniques for the deinterleaving of repetitive sequences[J]. IEE Proceedings F:Radar and Signal Processing, 1989, 136(4): 149–154. doi: 10.1049/ip-f-2.1989.0025
    [17] MILOJEVIĆ D J and POPOVIĆ B M. Improved algorithm for the deinterleaving of radar pulses[J]. IEE Proceedings F:Radar and Signal Processing, 1992, 139(1): 98–104. doi: 10.1049/ip-f-2.1992.0012
    [18] NISHIGUCHI K and KOBAYASHI M. Improved algorithm for estimating pulse repetition intervals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 407–421. doi: 10.1109/7.845217
    [19] LIU Zhangmeng. Online pulse deinterleaving with finite automata[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1139–1147. doi: 10.1109/TAES.2019.2925447
    [20] LIU Zhangmeng and YU P S. Classification, denoising, and deinterleaving of pulse streams with recurrent neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 1624–1639. doi: 10.1109/TAES.2018.2874139
    [21] LI Xueqiong, LIU Zhangmeng, and HUANG Zhitao. Deinterleaving of pulse streams with denoising autoencoders[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4767–4778. doi: 10.1109/TAES.2020.3004208
    [22] LIU Zhangmeng. Recognition of multifunction radars via hierarchically mining and exploiting pulse group patterns[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4659–4672. doi: 10.1109/TAES.2020.2999163
    [23] LIU Zhangmeng. Pulse deinterleaving for multifunction radars with hierarchical deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3585–3599. doi: 10.1109/TAES.2021.3079571
    [24] MITRA S K. Digital Signal Processing: A Computer-Based Approach[M]. 2nd ed. Boston: McGraw-Hill, 2001: 33–52.
    [25] SMITH III J O. Spectral Audio Signal Processing[M]. USA: W3K Publishing, 2011: 7–112.
    [26] DUDA R O and HART P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15(1): 11–15. doi: 10.1145/361237.361242
    [27] ILLINGWORTH J and KITTLER J. A survey of the Hough transform[J]. Computer Vision, Graphics, and Image Processing, 1988, 44(1): 87–116. doi: 10.1016/S0734-189X(88)80033-1
  • 加载中
图(5)
计量
  • 文章访问数:  721
  • HTML全文浏览量:  397
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 修回日期:  2022-02-26
  • 录用日期:  2022-03-10
  • 网络出版日期:  2022-03-21
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回