[1] |
COHEN G, ENCHEVA S, and LITSYN S. On binary constructions of quantum codes[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2495–2498. doi: 10.1109/18.796389
|
[2] |
SHI Minjia, ÖZBUDAK F, XU Li, et al. LCD codes from tridiagonal Toeplitz matrices[J]. Finite Fields and Their Applications, 2021, 75: 101892. doi: 10.1016/J.FFA.2021.101892
|
[3] |
陈刚, 李瑞虎. 三元域上对偶距离为3的自正交码构造[J]. 计算机工程与应用, 2011, 47(16): 38–39. doi: 10.3778/j.issn.1002-8331.2011.16.012CHEN Gang and LI Ruihu. Construction of self-orthogonal codes with dual distance three on ternary filed[J]. Computer Engineering and Applications, 2011, 47(16): 38–39. doi: 10.3778/j.issn.1002-8331.2011.16.012
|
[4] |
CHEN Gang and LI Ruihu. Ternary self-orthogonal codes of dual distance three and ternary quantum codes of distance three[J]. Designs, Codes and Cryptography, 2013, 69(1): 53–63. doi: 10.1007/s10623-012-9620-7
|
[5] |
李益群, 刘三阳, 王雷. $ {F_4} $ 上的3维最优自正交码[J]. 西北大学学报:自然科学版, 2006, 36(6): 871–874.LI Yiqun, LIU Sanyang, and WANG Lei. Optimal quaternary self-orthogonal codes of dimension three[J]. Journal of Northwest University:Natural Science Edition, 2006, 36(6): 871–874.
|
[6] |
SOK L, SHI Minjia, and SOLÉ P. Constructions of optimal LCD codes over large finite fields[J]. Finite Fields and Their Applications, 2018, 50: 138–153. doi: 10.1016/j.ffa.2017.11.007
|
[7] |
CARLET C and GUILLEY S. Complementary dual codes for counter-measures to side-channel attacks[M]. PINTO R, MALONEK P R, and VETTORI P. Coding Theory and Applications. Cham: Springer, 2015: 97–105.
|
[8] |
YANG Xiang and MASSEY J L. The condition for a cyclic code to have a complementary dual[J]. Discrete Mathematics, 1994, 126(1/3): 391–393. doi: 10.1016/0012-365x(94)90283-6
|
[9] |
SENDRIER N. Linear codes with complementary duals meet the Gilbert–Varshamov bound[J]. Discrete Mathematics, 2004, 285(1/3): 345–347. doi: 10.1016/j.disc.2004.05.005
|
[10] |
唐春明, 吴虹佳, 亓延峰. 有限域上的LCD码和LCP码[J]. 西华师范大学学报:自然科学版, 2020, 41(1): 1–10. doi: 10.16246/j.issn.1673-5072.2020.01.001TANG Chunming, WU Hongjia, and QI Yanfeng. LCD codes and LCP codes over finite fields[J]. Journal of China West Normal University:Natural Sciences, 2020, 41(1): 1–10. doi: 10.16246/j.issn.1673-5072.2020.01.001
|
[11] |
CARLET C, MESNAGER S, TANG Chunming, et al. Linear codes over $\mathbb{F}_q $ are equivalent to LCD codes for $ q \gt 3 $ [J]. IEEE Transactions on Information Theory, 2018, 64(4): 3010–3017. doi: 10.1109/TIT.2018.2789347
|
[12] |
宋倩, 李瑞虎, 付强, 等. 五元域上LCD码的构造[J]. 空军工程大学学报, 2018, 19(5): 104–108. doi: 10.3969/j.issn.1009-3516.2018.05.018SONG Qian, LI Ruihu, FU Qiang, et al. On the construction of LCD codes over $ {F_5} $[J]. Journal of Air Force Engineering University:Natural Science Edition, 2018, 19(5): 104–108. doi: 10.3969/j.issn.1009-3516.2018.05.018
|
[13] |
ZHOU Zhengchun, LI Xia, TANG Chunming, et al. Binary LCD codes and self-orthogonal codes from a generic construction[J]. IEEE Transactions on Information Theory, 2019, 65(1): 16–27. doi: 10.1109/TIT.2018.2823704
|
[14] |
LI Xia, CHENG Feng, TANG Chunming, et al. Some classes of LCD codes and self-orthogonal codes over finite fields[J]. Advances in Mathematics of Communications, 2019, 13(2): 267–280. doi: 10.3934/amc.2019018
|
[15] |
钱毅, 李平, 唐永生. 一种四元厄米特LCD码与厄米特自正交码的构造方法[J]. 电子学报, 2020, 48(3): 577–581. doi: 10.3969/j.issn.0372-2112.2020.03.022QIAN Yi, LI Ping, and TANG Yongsheng. A construction method of quaternary hermitian LCD codes and hermitian self-orthogonal codes[J]. Acta Electronica Sinica, 2020, 48(3): 577–581. doi: 10.3969/j.issn.0372-2112.2020.03.022
|
[16] |
PANG Binbin, ZHU Shixin, and KAI Xiaoshan. Some new bounds on LCD codes over finite fields[J]. Cryptography and Communications, 2020, 12(4): 743–755. doi: 10.1007/s12095-019-00417-y
|
[17] |
HUFFMAN W C and PLESS V. Fundamentals of Error-Correcting Codes[M]. Cambridge: Cambridge University Press, 2010: 48–52.
|