高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种三元线性互补对偶码与自正交码的构造方法

李平 张嘉媛 孙中华

李平, 张嘉媛, 孙中华. 一种三元线性互补对偶码与自正交码的构造方法[J]. 电子与信息学报, 2022, 44(11): 4018-4024. doi: 10.11999/JEIT210979
引用本文: 李平, 张嘉媛, 孙中华. 一种三元线性互补对偶码与自正交码的构造方法[J]. 电子与信息学报, 2022, 44(11): 4018-4024. doi: 10.11999/JEIT210979
LI Ping, ZHANG Jiayuan, SUN Zhonghua. A Construction Method of Ternary Linear Complementary Dual Codes and Self-orthogonal Codes[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4018-4024. doi: 10.11999/JEIT210979
Citation: LI Ping, ZHANG Jiayuan, SUN Zhonghua. A Construction Method of Ternary Linear Complementary Dual Codes and Self-orthogonal Codes[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4018-4024. doi: 10.11999/JEIT210979

一种三元线性互补对偶码与自正交码的构造方法

doi: 10.11999/JEIT210979
基金项目: 国家自然科学基金(61972126, 61572168, 62002098)
详细信息
    作者简介:

    李平:男,副教授,硕士生导师,研究方向为代数编码及非线性移位寄存器序列

    张嘉媛:女,硕士生,研究方向为代数编码

    孙中华:男,副教授,硕士生导师,研究方向为代数编码

    通讯作者:

    张嘉媛 zjy981202@163.com

  • 中图分类号: TN911.22

A Construction Method of Ternary Linear Complementary Dual Codes and Self-orthogonal Codes

Funds: The National Natural Science Foundation of China (61972126, 61572168, 62002098)
  • 摘要: 有限域上线性互补对偶(LCD)码有良好的相关特性和正交特性,并能够防御信道攻击。自正交码是编码理论中一类非常重要的码,可以用于构造量子纠错码。该文研究了有限域F3上的LCD码。通过选取4种合适的定义集,利用有限域F3上线性码是LCD码或自正交码的判定条件,构造了4类3元LCD码和一些自正交码,并研究了这4类线性码的对偶码,得到了一些3元最优线性码。
  • [1] COHEN G, ENCHEVA S, and LITSYN S. On binary constructions of quantum codes[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2495–2498. doi: 10.1109/18.796389
    [2] SHI Minjia, ÖZBUDAK F, XU Li, et al. LCD codes from tridiagonal Toeplitz matrices[J]. Finite Fields and Their Applications, 2021, 75: 101892. doi: 10.1016/J.FFA.2021.101892
    [3] 陈刚, 李瑞虎. 三元域上对偶距离为3的自正交码构造[J]. 计算机工程与应用, 2011, 47(16): 38–39. doi: 10.3778/j.issn.1002-8331.2011.16.012

    CHEN Gang and LI Ruihu. Construction of self-orthogonal codes with dual distance three on ternary filed[J]. Computer Engineering and Applications, 2011, 47(16): 38–39. doi: 10.3778/j.issn.1002-8331.2011.16.012
    [4] CHEN Gang and LI Ruihu. Ternary self-orthogonal codes of dual distance three and ternary quantum codes of distance three[J]. Designs, Codes and Cryptography, 2013, 69(1): 53–63. doi: 10.1007/s10623-012-9620-7
    [5] 李益群, 刘三阳, 王雷. $ {F_4} $ 上的3维最优自正交码[J]. 西北大学学报:自然科学版, 2006, 36(6): 871–874.

    LI Yiqun, LIU Sanyang, and WANG Lei. Optimal quaternary self-orthogonal codes of dimension three[J]. Journal of Northwest University:Natural Science Edition, 2006, 36(6): 871–874.
    [6] SOK L, SHI Minjia, and SOLÉ P. Constructions of optimal LCD codes over large finite fields[J]. Finite Fields and Their Applications, 2018, 50: 138–153. doi: 10.1016/j.ffa.2017.11.007
    [7] CARLET C and GUILLEY S. Complementary dual codes for counter-measures to side-channel attacks[M]. PINTO R, MALONEK P R, and VETTORI P. Coding Theory and Applications. Cham: Springer, 2015: 97–105.
    [8] YANG Xiang and MASSEY J L. The condition for a cyclic code to have a complementary dual[J]. Discrete Mathematics, 1994, 126(1/3): 391–393. doi: 10.1016/0012-365x(94)90283-6
    [9] SENDRIER N. Linear codes with complementary duals meet the Gilbert–Varshamov bound[J]. Discrete Mathematics, 2004, 285(1/3): 345–347. doi: 10.1016/j.disc.2004.05.005
    [10] 唐春明, 吴虹佳, 亓延峰. 有限域上的LCD码和LCP码[J]. 西华师范大学学报:自然科学版, 2020, 41(1): 1–10. doi: 10.16246/j.issn.1673-5072.2020.01.001

    TANG Chunming, WU Hongjia, and QI Yanfeng. LCD codes and LCP codes over finite fields[J]. Journal of China West Normal University:Natural Sciences, 2020, 41(1): 1–10. doi: 10.16246/j.issn.1673-5072.2020.01.001
    [11] CARLET C, MESNAGER S, TANG Chunming, et al. Linear codes over $\mathbb{F}_q $ are equivalent to LCD codes for $ q \gt 3 $ [J]. IEEE Transactions on Information Theory, 2018, 64(4): 3010–3017. doi: 10.1109/TIT.2018.2789347
    [12] 宋倩, 李瑞虎, 付强, 等. 五元域上LCD码的构造[J]. 空军工程大学学报, 2018, 19(5): 104–108. doi: 10.3969/j.issn.1009-3516.2018.05.018

    SONG Qian, LI Ruihu, FU Qiang, et al. On the construction of LCD codes over $ {F_5} $[J]. Journal of Air Force Engineering University:Natural Science Edition, 2018, 19(5): 104–108. doi: 10.3969/j.issn.1009-3516.2018.05.018
    [13] ZHOU Zhengchun, LI Xia, TANG Chunming, et al. Binary LCD codes and self-orthogonal codes from a generic construction[J]. IEEE Transactions on Information Theory, 2019, 65(1): 16–27. doi: 10.1109/TIT.2018.2823704
    [14] LI Xia, CHENG Feng, TANG Chunming, et al. Some classes of LCD codes and self-orthogonal codes over finite fields[J]. Advances in Mathematics of Communications, 2019, 13(2): 267–280. doi: 10.3934/amc.2019018
    [15] 钱毅, 李平, 唐永生. 一种四元厄米特LCD码与厄米特自正交码的构造方法[J]. 电子学报, 2020, 48(3): 577–581. doi: 10.3969/j.issn.0372-2112.2020.03.022

    QIAN Yi, LI Ping, and TANG Yongsheng. A construction method of quaternary hermitian LCD codes and hermitian self-orthogonal codes[J]. Acta Electronica Sinica, 2020, 48(3): 577–581. doi: 10.3969/j.issn.0372-2112.2020.03.022
    [16] PANG Binbin, ZHU Shixin, and KAI Xiaoshan. Some new bounds on LCD codes over finite fields[J]. Cryptography and Communications, 2020, 12(4): 743–755. doi: 10.1007/s12095-019-00417-y
    [17] HUFFMAN W C and PLESS V. Fundamentals of Error-Correcting Codes[M]. Cambridge: Cambridge University Press, 2010: 48–52.
  • 加载中
计量
  • 文章访问数:  664
  • HTML全文浏览量:  600
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 修回日期:  2021-11-21
  • 录用日期:  2021-11-23
  • 网络出版日期:  2021-11-26
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回