高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于斯皮尔曼秩相关结合神经网络的电池组内部短路故障检测算法

高明裕 蔡林辉 孙长城 刘才明 张照娓 董哲康 何志伟 高伟伟

高明裕, 蔡林辉, 孙长城, 刘才明, 张照娓, 董哲康, 何志伟, 高伟伟. 一种基于斯皮尔曼秩相关结合神经网络的电池组内部短路故障检测算法[J]. 电子与信息学报, 2022, 44(11): 3734-3747. doi: 10.11999/JEIT210975
引用本文: 高明裕, 蔡林辉, 孙长城, 刘才明, 张照娓, 董哲康, 何志伟, 高伟伟. 一种基于斯皮尔曼秩相关结合神经网络的电池组内部短路故障检测算法[J]. 电子与信息学报, 2022, 44(11): 3734-3747. doi: 10.11999/JEIT210975
GAO Mingyu, CAI Linhui, SUN Changcheng, LIU Caiming, ZHANG Zhaowei, DONG Zhekang, HE Zhiwei, GAO Weiwei. An Internal Short Circuit Fault Detecting of Battery Pack Based on Spearman Rank Correlation Combined with Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3734-3747. doi: 10.11999/JEIT210975
Citation: GAO Mingyu, CAI Linhui, SUN Changcheng, LIU Caiming, ZHANG Zhaowei, DONG Zhekang, HE Zhiwei, GAO Weiwei. An Internal Short Circuit Fault Detecting of Battery Pack Based on Spearman Rank Correlation Combined with Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3734-3747. doi: 10.11999/JEIT210975

一种基于斯皮尔曼秩相关结合神经网络的电池组内部短路故障检测算法

doi: 10.11999/JEIT210975
基金项目: 国家重点研发计划 (2020YFB1710600),国家自然科学基金(62171170),浙江省重点研发计划 (2021C01111)
详细信息
    作者简介:

    高明裕:男,教授,研究方向为电池组故障检测

    蔡林辉:男,硕士生,研究方向为电池组故障检测

    孙长城:男,博士生,研究方向为电池组故障检测

    刘才明:男,硕士生,研究方向为电池组故障检测

    张照娓:女,博士生,研究方向为汽车电子技术

    董哲康:男,副教授,研究方向为神经形态计算系统、电路故障诊断

    何志伟:男,教授,研究方向为电池组故障检测

    高伟伟:女,中级工程师,研究方向为电池组故障检测

    通讯作者:

    董哲康 englishp@hdu.edu.cn

  • 中图分类号: TM911

An Internal Short Circuit Fault Detecting of Battery Pack Based on Spearman Rank Correlation Combined with Neural Network

Funds: The National Key R & D Program of China (2020YFB1710600), The National Natural Science Foundation of China (62171170), The Key R&D Program of Zhejiang Province (2021C01111)
  • 摘要: 电池组是电动汽车能源系统的重要组成部分,保障其安全性对电动汽车的智能化发展和人的生命财产都具有重要的意义,检测和保障能源系统中电池组的安全性已成为动力电池领域内的研究热点。神经网络被应用于电池组的各项数据检测中,但在电池组内部短路故障中基于相关系数等信号处理的方法仍广泛使用,其实现方案往往存在针对特定对象、需要特定环境、泛用性能较差等问题。基于此,该文融合相关系数和神经网络的特点,提出一种基于斯皮尔曼秩相关结合三通道卷积双向门控循环神经网络(TBi-GRU)的电池组内部短路故障检测算法。首先,基于斯皮尔曼秩相关系数,滑动窗口联合无量纲化,标准化多维度的电池组运行特征;接着利用提取的正常状态下电池组运行特征训练TBi-GRU神经网络;然后基于已训练好的TBi-GRU模型检测内部短路状态下的电池组运行特征,结合预测结果与各通道的动态阈值对电池组状况进行检测。通过理想条件的仿真分析与实际环境的平台验证,验证了该方法能够充分结合斯皮尔曼秩相关系数的鲁棒性强和TBi-GRU神经网络泛用性强的特点,识别出电池组的内部短路故障。
  • 图  1  整体架构

    图  2  电池组故障特征提取的过程

    图  3  模型网络结构

    图  4  可视化模型输入和输出的计算过程

    图  5  故障检测过程

    图  6  10 Ω仿真实验电压响应及局部放大图

    图  7  5 Ω仿真实验电压响应及局部放大图

    图  8  1 Ω仿真实验电压响应及局部放大图

    图  9  模型预测结果图

    图  10  不同ISC时间的电压响应和特征提取结果对比

    图  11  锂离子模拟ISC实验设置

    图  12  10 Ω短路模型前后对比图

    图  13  5 Ω短路模型前后对比图

    图  14  1 Ω短路模型前后对比图

    图  15  0.5 A恒流放电过程对比

    表  1  故障检测算法对比

    文献[10]文献[11]文献
    [12, 13] 
    文献
    [6, 16, 17] 
    本文
    电池参数估计不需要不需要需要不需要不需要
    特征提取
    模型训练不需要不需要不需要需要需要
    多通道特性
    下载: 导出CSV

    表  2  检测指标的描述

    指标预测情况描述
    PN
    实际PTPFNTP(True Positive):预测结果是故障,实际结果也是故障
    FN( False Negative):预测结果是故障,真实结果是正常
    NFPTNFP( False Positive):预测结果是正常,实际结果是故障
    TN( True Negative):预测结果是正常,真实结果是正常
    下载: 导出CSV

    表  3  仿真的锂离子电池Lithium-lon的性能参数

    电池参数数值
    额定电压3.7 V
    额定容量1.35 Ah
    电池内阻27.4 mΩ
    响应时间30 s
    下载: 导出CSV

    表  4  对比模型参数设置

    参数模型
    RNNLSTMGRUTBi-GRU
    隐藏神经单元(6412864)(6412864)(6412864)(64128)
    卷积核0005
    激活函数SigmoidSigmoidSigmoidLeakyReLUs, Sigmoid
    优化器AdamAdamAdamAdam
    初始学习率0.010.010.010.01
    下载: 导出CSV

    表  5  模型检测结果

    方法10 Ω故障定位5 Ω故障定位1 Ω故障定位
    DTW+TBi-GRU1号
    ED+TBi-GRU1号
    Pearson+TBi-GRU8号3号1号
    Spearman+RNN8号3号1号
    Spearman+LSTM8号3号1号
    Spearman+GRU8号3号1号
    Spearman+TBi-GRU8号3号1号
    下载: 导出CSV

    表  6  模型预测结果指标对比(%)

    阻值(Ω)类别RecallPrecissionF1ScoreAccuracy
    1ED+TBi-GRU100.0049.2566.0097.73
    DWT+TBi-GRU100.0052.2468.6397.87
    Person+TBi-GRU83.1398.5790.2099.00
    Spearman+RNN44.5385.0758.4694.60
    Spearman+LSTM52.5991.0466.6795.93
    Spearman+GRU50.8589.5564.8695.67
    Spearman+TBi-GRU79.76100.0088.7498.87
    5ED+TBi-GRU80.9528.3341.9896.87
    DWT+TBi-GRU82.1438.3352.2797.20
    Person+TBi-GRU66.6793.3377.7897.87
    Spearman+RNN32.2248.3338.6793.87
    Spearman+LSTM41.4168.3351.5794.93
    Spearman+GRU40.8266.6750.6394.80
    Spearman+TBi-GRU84.2180.0082.0598.60
    10ED+TBi-GRU0.0095.53
    DWT+TBi-GRU0.0095.53
    Person+TBi-GRU72.7371.6472.1897.53
    Spearman+RNN38.2438.8138.5294.47
    Spearman+LSTM79.1728.3641.7696.47
    Spearman+GRU75.0026.8739.5696.33
    Spearman+TBi-GRU89.6681.2585.2598.80
    下载: 导出CSV

    表  7  各种阈值方法对比结果(%)

    阻值(Ω)阈值类别RecallPrecissionF1ScoreAccuracy
    1max40.12100.0057.2693.33
    μ+3σ29.1793.3344.4490.67
    本文79.76100.0088.7498.87
    5max29.1793.3344.4490.67
    μ+3σ89.6643.3358.4397.53
    本文84.2180.0082.0598.60
    10max52.2188.0665.5695.87
    μ+3σ89.1949.2563.4697.47
    本文89.6681.2585.2598.80
    下载: 导出CSV

    表  8  预测结果与原始数据对噪声和较低ISC的抑制效果(%)对比

    方法抑制较低ISC抑制噪声
    1 Ω5 Ω10 Ω1 Ω5 Ω10 Ω
    Person+TBi-GRU–12.5339.0019.7014.9427.2615.32
    Spearman+RNN0.6225.739.20–20.18–25.44–19.37
    Spearman+LSTM–0.1532.4016.01–15.10–19.43–9.03
    Spearman+GRU–0.7416.7018.23–13.14–17.08–7.34
    Spearman+TBi-GRU–4.4418.658.0912.5222.6116.16
    下载: 导出CSV
  • [1] DIAO Weiping, NAQVI I H, and PECHT M. Early detection of anomalous degradation behavior in lithium-ion batteries[J]. Journal of Energy Storage, 2020, 32: 101710. doi: 10.1016/j.est.2020.101710
    [2] SEO M, GOH T, PARK M, et al. Detection method for soft internal short circuit in lithium-ion battery pack by extracting open circuit voltage of faulted cell[J]. Energies, 2018, 11(7): 1669. doi: 10.3390/en11071669
    [3] 张照娓, 郭天滋, 高明裕, 等. 电动汽车锂离子电池荷电状态估算方法研究综述[J]. 电子与信息学报, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487

    ZHANG Zhaowei, GUO Tianzi, GAO Mingyu, et al. Review of SoC estimation methods for electric vehicle li-ion batteries[J]. Journal of Electronics &Information Technology, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487
    [4] FENG Xuning, PAN Yue, HE Xiangming, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18: 26–39. doi: 10.1016/j.est.2018.04.020
    [5] NAHA A, KHANDELWAL A, HARIHARAN K S, et al. On-board short-circuit detection of li-ion batteries undergoing fixed charging profile as in smartphone applications[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8782–8791. doi: 10.1109/TIE.2018.2889623
    [6] YANG Ruixin, XIONG Rui, HE Hongwen, et al. A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application[J]. Journal of Cleaner Production, 2018, 187: 950–959. doi: 10.1016/j.jclepro.2018.03.259
    [7] KANG Yongzhe, DUAN Bin, ZHOU Zhongkai, et al. A multi-fault diagnostic method based on an interleaved voltage measurement topology for series connected battery packs[J]. Journal of Power Sources, 2019, 417: 132–144. doi: 10.1016/j.jpowsour.2019.01.058
    [8] ZHANG Mingxuan, DU Jiuyu, LIU Lishuo, et al. Internal short circuit detection method for battery pack based on circuit topology[J]. Science China Technological Sciences, 2018, 61(10): 1502–1511. doi: 10.1007/s11431-017-9299-3
    [9] ZHENG Yuejiu, LU Yifan, GAO Wenkai, et al. Micro-short-circuit cell fault identification method for lithium-ion battery packs based on mutual information[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4373–4381. doi: 10.1109/TIE.2020.2984441
    [10] XIA Bing, MI C, CHEN Zheng, et al. Multiple cell lithium-ion battery system electric fault online diagnostics[C]. Proceedings of 2015 IEEE Transportation Electrification Conference and Expo, Dearborn, USA, 2015: 1–7.
    [11] SUN Zhenyu, WANG Zhenpo, LIU Peng, et al. Relative entropy based lithium-ion battery pack short circuit detection for electric vehicle[C]. 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, USA, 2020: 5061–5067.
    [12] CHIU K C, LIN C H, YEH S F, et al. An electrochemical modeling of lithium-ion battery nail penetration[J]. Journal of Power Sources, 2014, 251: 254–263. doi: 10.1016/j.jpowsour.2013.11.069
    [13] XIONG Rui, YANG Ruixin, CHEN Zeyu, et al. Online fault diagnosis of external short circuit for lithium-ion battery pack[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1081–1091. doi: 10.1109/TIE.2019.2899565
    [14] 党翰斌, 马睿, 周俊杰, 等. 基于CNN的质子交换膜燃料电池故障诊断[J]. 电力电子技术, 2020, 54(12): 52–55. doi: 10.3969/j.issn.1000-100X.2020.12.014

    DANG Hanbin, MA Rui, ZHOU Junjie, et al. Fault diagnosis of proton exchange membrane fuel cells based on CNN[J]. Power Electronics, 2020, 54(12): 52–55. doi: 10.3969/j.issn.1000-100X.2020.12.014
    [15] 彭运赛, 夏飞, 袁博, 等. 基于改进CNN和信息融合的动力电池组故障诊断方法[J]. 汽车工程, 2020, 42(11): 1529–1536. doi: 10.19562/j.chinasae.qcgc.2020.11.011

    PENG Yunsai, XIA Fei, YUAN Bo, et al. Fault diagnosis of traction battery pack based on improved convolution neural network and information fusion[J]. Automotive Engineering, 2020, 42(11): 1529–1536. doi: 10.19562/j.chinasae.qcgc.2020.11.011
    [16] NAHA A, KHANDELWAL A, AGARWAL S, et al. Internal short circuit detection in Li-ion batteries using supervised machine learning[J]. Scientific Reports, 2020, 10(1): 1301. doi: 10.1038/s41598-020-58021-7
    [17] YANG Ruixin, XIONG Rui, MA Suxiao, et al. Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks[J]. Applied Energy, 2020, 260: 114253. doi: 10.1016/j.apenergy.2019.114253
    [18] ZHEN C, CHEN Ziqiang, and HUANZ D. A novel sensor fault diagnosis method for lithium-ion battery system using hybrid system modeling[C]. 2018 Condition Monitoring and Diagnosis (CMD), Perth, Australia, 2018: 1–5.
    [19] XIONG Rui, SUN Wanzhou, YU Quanqing, et al. Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles[J]. Applied Energy, 2020, 279: 115855. doi: 10.1016/j.apenergy.2020.115855
    [20] WILLIARD N, HE Wei, HENDRICKS C, et al. Lessons learned from the 787 Dreamliner issue on lithium-ion battery reliability[J]. Energies, 2013, 6(9): 4682–4695. doi: 10.3390/en6094682
    [21] XIA Bing, SHANG Yunlong, NGUYEN T, et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources, 2017, 337: 1–10. doi: 10.1016/j.jpowsour.2016.11.007
    [22] STEPHANOU M and VARUGHESE M. Sequential estimation of Spearman rank correlation using Hermite series estimators[J]. Journal of Multivariate Analysis, 2021, 186: 104783. doi: 10.1016/j.jmva.2021.104783
    [23] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]. NIPS 2014 Workshop on Deep Learning, Montreal, Canada, 2014. doi: 10.48550/arXiv.1412.3555.
    [24] SU Ya, ZHAO Youjian, NIU Chenhao, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]. The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, USA, 2019: 2828–2837.
    [25] 徐文畅, 何文明, 游斌权, 等. 基于形态特征提取的急性下壁心肌梗死BiLSTM网络辅助诊断算法[J]. 电子与信息学报, 2021, 43(9): 2561–2568. doi: 10.11999/JEIT200480

    XU Wenchang, HE Wenming, YOU Binquan, et al. Acute inferior myocardial infarction detection algorithm based on BiLSTM network of morphological feature extraction[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2561–2568. doi: 10.11999/JEIT200480
    [26] HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 2018: 387–395.
  • 加载中
图(15) / 表(8)
计量
  • 文章访问数:  788
  • HTML全文浏览量:  462
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2022-03-22
  • 录用日期:  2022-03-10
  • 网络出版日期:  2022-03-21
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回