An Internal Short Circuit Fault Detecting of Battery Pack Based on Spearman Rank Correlation Combined with Neural Network
-
摘要: 电池组是电动汽车能源系统的重要组成部分,保障其安全性对电动汽车的智能化发展和人的生命财产都具有重要的意义,检测和保障能源系统中电池组的安全性已成为动力电池领域内的研究热点。神经网络被应用于电池组的各项数据检测中,但在电池组内部短路故障中基于相关系数等信号处理的方法仍广泛使用,其实现方案往往存在针对特定对象、需要特定环境、泛用性能较差等问题。基于此,该文融合相关系数和神经网络的特点,提出一种基于斯皮尔曼秩相关结合三通道卷积双向门控循环神经网络(TBi-GRU)的电池组内部短路故障检测算法。首先,基于斯皮尔曼秩相关系数,滑动窗口联合无量纲化,标准化多维度的电池组运行特征;接着利用提取的正常状态下电池组运行特征训练TBi-GRU神经网络;然后基于已训练好的TBi-GRU模型检测内部短路状态下的电池组运行特征,结合预测结果与各通道的动态阈值对电池组状况进行检测。通过理想条件的仿真分析与实际环境的平台验证,验证了该方法能够充分结合斯皮尔曼秩相关系数的鲁棒性强和TBi-GRU神经网络泛用性强的特点,识别出电池组的内部短路故障。Abstract: Battery pack is an important part of the energy system of electric vehicles. Ensuring its safety is of great significance to the intelligent development of electric vehicles and human life and property. Detecting and guaranteeing the safety of battery pack in the energy system has become a research hotspot in the field of power batteries. Neural network is widely used in battery data detection, but the signal processing method based on correlation coefficient is still widely used in battery short circuit fault, and its implementation scheme often has some problems, such as targeting specific objects, requiring specific environment, and poor performance in general use. Based on this, this paper combines the characteristics of correlation coefficient and neural network, a neural network fault detection algorithm for internal short circuit in battery packs based on Three-channel parallel Bidirectional Gating Recurrent Unit (TBi-GRU) is proposed. Firstly, based on Spearman's rank correlation coefficient, the sliding window is combined with dimensionless and standardized multi-dimensional battery pack operating characteristics. Then, the TBi-GRU neural network is trained by using the extracted operating characteristics of the battery in the normal state. Then, based on the trained TBi-GRU model, the operating characteristics of the battery packs under the internal short circuit state are detected, and the condition of the battery string is detected by combining the prediction results with the dynamic thresholds of each channel. Through simulation analysis of ideal conditions and platform verification of actual environment, it is proved that this method can fully combine the strong robustness of Szpilman's rank correlation coefficient and the strong universality of TBI-GRU neural network to identify accurately the battery pack's internal short circuit fault.
-
表 1 故障检测算法对比
表 2 检测指标的描述
指标 预测 情况描述 P N 实际 P TP FN TP(True Positive):预测结果是故障,实际结果也是故障 FN( False Negative):预测结果是故障,真实结果是正常 N FP TN FP( False Positive):预测结果是正常,实际结果是故障 TN( True Negative):预测结果是正常,真实结果是正常 表 3 仿真的锂离子电池Lithium-lon的性能参数
电池参数 数值 额定电压 3.7 V 额定容量 1.35 Ah 电池内阻 27.4 mΩ 响应时间 30 s 表 4 对比模型参数设置
参数 模型 RNN LSTM GRU TBi-GRU 隐藏神经单元 (6412864) (6412864) (6412864) (64128) 卷积核 0 0 0 5 激活函数 Sigmoid Sigmoid Sigmoid LeakyReLUs, Sigmoid 优化器 Adam Adam Adam Adam 初始学习率 0.01 0.01 0.01 0.01 表 5 模型检测结果
方法 10 Ω故障定位 5 Ω故障定位 1 Ω故障定位 DTW+TBi-GRU 无 无 1号 ED+TBi-GRU 无 无 1号 Pearson+TBi-GRU 8号 3号 1号 Spearman+RNN 8号 3号 1号 Spearman+LSTM 8号 3号 1号 Spearman+GRU 8号 3号 1号 Spearman+TBi-GRU 8号 3号 1号 表 6 模型预测结果指标对比(%)
阻值(Ω) 类别 Recall Precission F1Score Accuracy 1 ED+TBi-GRU 100.00 49.25 66.00 97.73 DWT+TBi-GRU 100.00 52.24 68.63 97.87 Person+TBi-GRU 83.13 98.57 90.20 99.00 Spearman+RNN 44.53 85.07 58.46 94.60 Spearman+LSTM 52.59 91.04 66.67 95.93 Spearman+GRU 50.85 89.55 64.86 95.67 Spearman+TBi-GRU 79.76 100.00 88.74 98.87 5 ED+TBi-GRU 80.95 28.33 41.98 96.87 DWT+TBi-GRU 82.14 38.33 52.27 97.20 Person+TBi-GRU 66.67 93.33 77.78 97.87 Spearman+RNN 32.22 48.33 38.67 93.87 Spearman+LSTM 41.41 68.33 51.57 94.93 Spearman+GRU 40.82 66.67 50.63 94.80 Spearman+TBi-GRU 84.21 80.00 82.05 98.60 10 ED+TBi-GRU 无 0.00 无 95.53 DWT+TBi-GRU 无 0.00 无 95.53 Person+TBi-GRU 72.73 71.64 72.18 97.53 Spearman+RNN 38.24 38.81 38.52 94.47 Spearman+LSTM 79.17 28.36 41.76 96.47 Spearman+GRU 75.00 26.87 39.56 96.33 Spearman+TBi-GRU 89.66 81.25 85.25 98.80 表 7 各种阈值方法对比结果(%)
阻值(Ω) 阈值类别 Recall Precission F1Score Accuracy 1 max 40.12 100.00 57.26 93.33 μ+3σ 29.17 93.33 44.44 90.67 本文 79.76 100.00 88.74 98.87 5 max 29.17 93.33 44.44 90.67 μ+3σ 89.66 43.33 58.43 97.53 本文 84.21 80.00 82.05 98.60 10 max 52.21 88.06 65.56 95.87 μ+3σ 89.19 49.25 63.46 97.47 本文 89.66 81.25 85.25 98.80 表 8 预测结果与原始数据对噪声和较低ISC的抑制效果(%)对比
方法 抑制较低ISC 抑制噪声 1 Ω 5 Ω 10 Ω 1 Ω 5 Ω 10 Ω Person+TBi-GRU –12.53 39.00 19.70 14.94 27.26 15.32 Spearman+RNN 0.62 25.73 9.20 –20.18 –25.44 –19.37 Spearman+LSTM –0.15 32.40 16.01 –15.10 –19.43 –9.03 Spearman+GRU –0.74 16.70 18.23 –13.14 –17.08 –7.34 Spearman+TBi-GRU –4.44 18.65 8.09 12.52 22.61 16.16 -
[1] DIAO Weiping, NAQVI I H, and PECHT M. Early detection of anomalous degradation behavior in lithium-ion batteries[J]. Journal of Energy Storage, 2020, 32: 101710. doi: 10.1016/j.est.2020.101710 [2] SEO M, GOH T, PARK M, et al. Detection method for soft internal short circuit in lithium-ion battery pack by extracting open circuit voltage of faulted cell[J]. Energies, 2018, 11(7): 1669. doi: 10.3390/en11071669 [3] 张照娓, 郭天滋, 高明裕, 等. 电动汽车锂离子电池荷电状态估算方法研究综述[J]. 电子与信息学报, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487ZHANG Zhaowei, GUO Tianzi, GAO Mingyu, et al. Review of SoC estimation methods for electric vehicle li-ion batteries[J]. Journal of Electronics &Information Technology, 2021, 43(7): 1803–1815. doi: 10.11999/JEIT200487 [4] FENG Xuning, PAN Yue, HE Xiangming, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18: 26–39. doi: 10.1016/j.est.2018.04.020 [5] NAHA A, KHANDELWAL A, HARIHARAN K S, et al. On-board short-circuit detection of li-ion batteries undergoing fixed charging profile as in smartphone applications[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8782–8791. doi: 10.1109/TIE.2018.2889623 [6] YANG Ruixin, XIONG Rui, HE Hongwen, et al. A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application[J]. Journal of Cleaner Production, 2018, 187: 950–959. doi: 10.1016/j.jclepro.2018.03.259 [7] KANG Yongzhe, DUAN Bin, ZHOU Zhongkai, et al. A multi-fault diagnostic method based on an interleaved voltage measurement topology for series connected battery packs[J]. Journal of Power Sources, 2019, 417: 132–144. doi: 10.1016/j.jpowsour.2019.01.058 [8] ZHANG Mingxuan, DU Jiuyu, LIU Lishuo, et al. Internal short circuit detection method for battery pack based on circuit topology[J]. Science China Technological Sciences, 2018, 61(10): 1502–1511. doi: 10.1007/s11431-017-9299-3 [9] ZHENG Yuejiu, LU Yifan, GAO Wenkai, et al. Micro-short-circuit cell fault identification method for lithium-ion battery packs based on mutual information[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4373–4381. doi: 10.1109/TIE.2020.2984441 [10] XIA Bing, MI C, CHEN Zheng, et al. Multiple cell lithium-ion battery system electric fault online diagnostics[C]. Proceedings of 2015 IEEE Transportation Electrification Conference and Expo, Dearborn, USA, 2015: 1–7. [11] SUN Zhenyu, WANG Zhenpo, LIU Peng, et al. Relative entropy based lithium-ion battery pack short circuit detection for electric vehicle[C]. 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, USA, 2020: 5061–5067. [12] CHIU K C, LIN C H, YEH S F, et al. An electrochemical modeling of lithium-ion battery nail penetration[J]. Journal of Power Sources, 2014, 251: 254–263. doi: 10.1016/j.jpowsour.2013.11.069 [13] XIONG Rui, YANG Ruixin, CHEN Zeyu, et al. Online fault diagnosis of external short circuit for lithium-ion battery pack[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1081–1091. doi: 10.1109/TIE.2019.2899565 [14] 党翰斌, 马睿, 周俊杰, 等. 基于CNN的质子交换膜燃料电池故障诊断[J]. 电力电子技术, 2020, 54(12): 52–55. doi: 10.3969/j.issn.1000-100X.2020.12.014DANG Hanbin, MA Rui, ZHOU Junjie, et al. Fault diagnosis of proton exchange membrane fuel cells based on CNN[J]. Power Electronics, 2020, 54(12): 52–55. doi: 10.3969/j.issn.1000-100X.2020.12.014 [15] 彭运赛, 夏飞, 袁博, 等. 基于改进CNN和信息融合的动力电池组故障诊断方法[J]. 汽车工程, 2020, 42(11): 1529–1536. doi: 10.19562/j.chinasae.qcgc.2020.11.011PENG Yunsai, XIA Fei, YUAN Bo, et al. Fault diagnosis of traction battery pack based on improved convolution neural network and information fusion[J]. Automotive Engineering, 2020, 42(11): 1529–1536. doi: 10.19562/j.chinasae.qcgc.2020.11.011 [16] NAHA A, KHANDELWAL A, AGARWAL S, et al. Internal short circuit detection in Li-ion batteries using supervised machine learning[J]. Scientific Reports, 2020, 10(1): 1301. doi: 10.1038/s41598-020-58021-7 [17] YANG Ruixin, XIONG Rui, MA Suxiao, et al. Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks[J]. Applied Energy, 2020, 260: 114253. doi: 10.1016/j.apenergy.2019.114253 [18] ZHEN C, CHEN Ziqiang, and HUANZ D. A novel sensor fault diagnosis method for lithium-ion battery system using hybrid system modeling[C]. 2018 Condition Monitoring and Diagnosis (CMD), Perth, Australia, 2018: 1–5. [19] XIONG Rui, SUN Wanzhou, YU Quanqing, et al. Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles[J]. Applied Energy, 2020, 279: 115855. doi: 10.1016/j.apenergy.2020.115855 [20] WILLIARD N, HE Wei, HENDRICKS C, et al. Lessons learned from the 787 Dreamliner issue on lithium-ion battery reliability[J]. Energies, 2013, 6(9): 4682–4695. doi: 10.3390/en6094682 [21] XIA Bing, SHANG Yunlong, NGUYEN T, et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources, 2017, 337: 1–10. doi: 10.1016/j.jpowsour.2016.11.007 [22] STEPHANOU M and VARUGHESE M. Sequential estimation of Spearman rank correlation using Hermite series estimators[J]. Journal of Multivariate Analysis, 2021, 186: 104783. doi: 10.1016/j.jmva.2021.104783 [23] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]. NIPS 2014 Workshop on Deep Learning, Montreal, Canada, 2014. doi: 10.48550/arXiv.1412.3555. [24] SU Ya, ZHAO Youjian, NIU Chenhao, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]. The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, USA, 2019: 2828–2837. [25] 徐文畅, 何文明, 游斌权, 等. 基于形态特征提取的急性下壁心肌梗死BiLSTM网络辅助诊断算法[J]. 电子与信息学报, 2021, 43(9): 2561–2568. doi: 10.11999/JEIT200480XU Wenchang, HE Wenming, YOU Binquan, et al. Acute inferior myocardial infarction detection algorithm based on BiLSTM network of morphological feature extraction[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2561–2568. doi: 10.11999/JEIT200480 [26] HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 2018: 387–395.