高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两类最优零相关区非周期互补序列集的构造

崔莉 许成谦

崔莉, 许成谦. 两类最优零相关区非周期互补序列集的构造[J]. 电子与信息学报, 2022, 44(12): 4304-4311. doi: 10.11999/JEIT210950
引用本文: 崔莉, 许成谦. 两类最优零相关区非周期互补序列集的构造[J]. 电子与信息学报, 2022, 44(12): 4304-4311. doi: 10.11999/JEIT210950
CUI Li, XU Chengqian. Constructions of Two Optimal Zero Correlation Zone Aperiodic Complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4304-4311. doi: 10.11999/JEIT210950
Citation: CUI Li, XU Chengqian. Constructions of Two Optimal Zero Correlation Zone Aperiodic Complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4304-4311. doi: 10.11999/JEIT210950

两类最优零相关区非周期互补序列集的构造

doi: 10.11999/JEIT210950
基金项目: 国家自然科学基金(61671402),河北省自然科学基金(F2020203043),河北省高等学校科学技术研究项目(ZD2021105)
详细信息
    作者简介:

    崔莉:女,博士生,研究方向为扩频序列设计

    许成谦:男,教授,博士生导师,研究方向为编码理论、密码学、信号设计

    通讯作者:

    许成谦 cqxu@ysu.edu.cn

  • 中图分类号: TN911.2

Constructions of Two Optimal Zero Correlation Zone Aperiodic Complementary Sequence Sets

Funds: The National Natural Science Foundation of China (61671402), The Natural Science Foundation of Hebei Province (F2020203043), The Natural Science Researh Programs of Hebei Educational Committee (ZD2021105)
  • 摘要: 该文基于正交矩阵,通过不同的矩阵变换的方法,提出两类零相关区(ZCZ)非周期互补序列集(ZACSS)的构造方法。在正交矩阵的阶能够被零相关区长度整除的条件下,所得序列集参数均能达到最优,且零相关区长度可以灵活选择。第1种方法构造的序列集具有理想的自相关互补性,通过进一步分组,可以得到多个组内互补的序列集。利用初始矩阵和正交矩阵的多样性能够构造出大量的最优零相关区非周期互补序列集,可应用于多载波码分多址(MC-CDMA)系统作为用户地址码来消除多径干扰和多址干扰。
  • 表  1  ZACSS构造方法的比较

    文献构造方法构造基础构造结果参数是否达到最优ZCZ长度
    文献[10]两个$N \times N$的正交矩阵$\left( {[{N \mathord{\left/ {\vphantom {N Z}} \right. } Z},N],Z} \right) - {\text{IGC}}_N^N$灵活:$Z$
    文献[11]
    构造方法1
    $Q \times Q$和$L \times L$的正交矩阵,$Q = pZ$, $L = NZ$$\left( {pNZ,Z} \right){\text{ACS}}_Q^L$灵活:$Z$
    文献[11]
    构造方法2
    $Q \times Q$和$L \times L$的正交矩阵,$Q = {p^n}Z$, $L = NZ$$\left( {{p^n}NZ,Z} \right){\text{ACS}}_Q^L$灵活:$Z$
    文献[13]2元$\left( {T,Z} \right){\text{ACS}}_M^N$4元$\left( {T,Z} \right){\text{ACS}}_M^N$$T = M\left\lfloor {{N \mathord{\left/ {\vphantom {N Z}} \right. } Z}} \right\rfloor $时最优固定:Z
    文献[14]
    构造方法1
    $D \times D$的正交矩阵,$\left( {M,L} \right){\text{ACS}}_N^L$且$\gcd \left( {L,D} \right) = 1$$\left( {MD,L} \right){\text{ACS}}_N^{LD}$$M = N$时
    最优
    固定:L
    文献[16]完备互补序列集${\text{PC}}\left( {M,L} \right)$$\left( {[{2^n},{2^n}M],Z} \right){\text{IaGC}}_{{2^n}M}^{{2^n}L}$组内最优$\left\{ {1,2,4, \cdots ,{2^{n - 1}}} \right\}$
    文献[19]${2^n} \times {2^n}$Hadamard矩阵,长度为$N$,ZCZ长度为$Z$ 的2元互补序列偶,$ N = {2^\alpha }{10^\beta }{26^\gamma } + 1 $$\left( {{2^{n + 1}},Z} \right){\text{ACS}}_{{2^{n + 1}}}^N$固定:$Z$
    本文
    构造方法1
    矩阵$ {{\mathbf{U}}_{H \times Z}} $和${{\mathbf{V}}_{H \times H}}$,两个$Q$阶正交矩阵,$Z|Q$$\left( {HQ,Z} \right){\text{ACS}}_Q^Q$灵活:可任意
    本文
    构造方法2
    正交矩阵${{\mathbf{A}}_{Q \times Q}}$和${{\mathbf{B}}_{L \times L}}$,$L = NZ$, $ Q=HZ $$\left( {HL,Z} \right){\text{ACS}}_Q^L$灵活:可任意
    下载: 导出CSV
  • [1] GOLAY M. Complementary series[J]. IRE Transactions on Information Theory, 1961, 7(2): 82–87. doi: 10.1109/TIT.1961.1057620
    [2] TSENG C C and LIU C. Complementary sets of sequences[J]. IEEE Transactions on Information Theory, 1972, 18(5): 644–652. doi: 10.1109/TIT.1972.1054860
    [3] FAN Pingzhi, YUAN Weina, and TU Yifeng. Z-complementary binary sequences[J]. IEEE Signal Processing Letters, 2007, 14(8): 509–512. doi: 10.1109/LSP.2007.891834
    [4] 张振宇, 陈卫, 曾凡鑫, 等. 多载波码分多址通信系统中抑制干扰的序列设计[J]. 电子与信息学报, 2009, 31(10): 2354–2358. doi: 10.3724/SP.J.1146.2008.01388

    ZHANG Zhenyu, CHEN Wei, ZENG Fanxin, et al. Construction of interference-resistant sequences for multi-carrier CDMA communication systems[J]. Journal of Electronics &Information Technology, 2009, 31(10): 2354–2358. doi: 10.3724/SP.J.1146.2008.01388
    [5] TU Yifeng, FAN Pingzhi, LI Hao, et al. A simple method for generating optimal Z-periodic complementary sequence set based on phase shift[J]. IEEE Signal Processing Letters, 2010, 17(10): 891–893. doi: 10.1109/LSP.2010.2068288
    [6] LI Yubo, XU Chengqian, JING Nan, et al. Constructions of Z-periodic complementary sequence set with flexible flock size[J]. IEEE Communications Letters, 2014, 18(2): 201–204. doi: 10.1109/LCOMM.2013.121813.132021
    [7] KE Pinhui and ZHOU Zhengchun. A generic construction of Z-periodic complementary sequence sets with flexible flock size and zero correlation zone length[J]. IEEE Signal Processing Letters, 2015, 22(9): 1462–1466. doi: 10.1109/LSP.2014.2369512
    [8] 白子祎, 刘凯. 组间零相关区周期互补序列集的构造[J/OL]. 燕山大学学报, https://kns.cnki.net/kcms/detail/13.1219.N.20210512.0928.026.html, 2021.

    BAI Ziyi and LIU Kai. Construction of inter-group zero correlation zone periodic complementary sequence sets[J/OL]. Journal of Yanshan University, https://kns.cnki.net/kcms/detail/13.1219.N.20210512.0928.026.html, 2021.
    [9] LIU Kai and NI Jia. Construction of gaussian integer periodic complementary sequence set with zero correlation zone[C]. 2020 International Symposium on Automation, Information and Computing (ISAIC 2020), Beijing, China, 2020: 012177 .
    [10] 李玉博, 田立影. 基于正交矩阵构造非周期组间互补序列集[J]. 电子与信息学报, 2018, 40(8): 2028–2032. doi: 10.11999/JEIT171005

    LI Yubo and TIAN Liying. Construction of inter-group complementary sequence sets based on orthogonal matrices[J]. Journal of Electronics &Information Technology, 2018, 40(8): 2028–2032. doi: 10.11999/JEIT171005
    [11] LI Yubo, SUN Jia’an, XU Chengqian, et al. Constructions of optimal zero correlation zone aperiodic complementary sequence sets[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100-A(3): 908–912. doi: 10.1587/transfun.E100.A.908
    [12] 陈晓玉, 苏荷茹, 高茜超. 一类最优的零相关区非周期互补序列集构造法[J]. 电子与信息学报, 2021, 43(2): 461–466. doi: 10.11999/JEIT190703

    CHEN Xiaoyu, SU Heru, and GAO Xichao. Construction of optimal zero correlation zone aperiodic complementary sequence sets[J]. Journal of Electronics &Information Technology, 2021, 43(2): 461–466. doi: 10.11999/JEIT190703
    [13] ZENG Fanxin, ZENG Xiaoping, ZHANG Zhenyu, et al. New construction method for quaternary aperiodic, periodic, and Z-complementary sequence sets[J]. Journal of Communications and Networks, 2012, 14(3): 230–236. doi: 10.1109/JCN.2012.6253082
    [14] CHEN Xiaoyu, LI Guanmin, and LI Huanchang. Two constructions of zero correlation zone aperiodic complementary sequence sets[J]. IET Communications, 2020, 14(4): 556–560. doi: 10.1049/iet-com.2019.0599
    [15] LI Xudong, FAN Pingzhi, TANG Xiaohu, et al. Quadriphase Z-complementary sequences[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2010, E93-A(11): 2251–2257. doi: 10.1587/transfun.E93.A.2251
    [16] 张振宇, 曾凡鑫, 宣贵新, 等. MC-CDMA系统中具有组内互补特性的序列构造[J]. 通信学报, 2011, 32(3): 27–32,39. doi: 10.3969/j.issn.1000-436X.2011.03.004

    ZHANG Zhenyu, ZENG Fanxin, XUAN Guixin, et al. Design of sequences with intra-group complementary properties for MC-CDMA systems[J]. Journal on Communications, 2011, 32(3): 27–32,39. doi: 10.3969/j.issn.1000-436X.2011.03.004
    [17] WU S W and CHEN Chaoyu. Optimal Z-complementary sequence sets with good peak-to-average power-ratio property[J]. IEEE Signal Processing Letters, 2018, 25(10): 1500–1504. doi: 10.1109/LSP.2018.2864705
    [18] XIE Chunlei, SUN Yu, and MING Yang. Constructions of optimal binary Z-complementary sequence sets with large zero correlation zone[J]. IEEE Signal Processing Letters, 2021, 28: 1694–1698. doi: 10.1109/LSP.2021.3104739
    [19] ADHIKARY A R and MAJHI S. New construction of optimal aperiodic Z-complementary sequence sets of odd-lengths[J]. Electronics Letters, 2019, 55(19): 1043–1045. doi: 10.1049/el.2019.1828
  • 加载中
表(1)
计量
  • 文章访问数:  896
  • HTML全文浏览量:  396
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-11-29
  • 录用日期:  2021-12-06
  • 网络出版日期:  2021-12-06
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回