高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Sinkhorn距离特征缩放的多约束非负矩阵分解算法

李松涛 李维刚 甘平 蒋林

李松涛, 李维刚, 甘平, 蒋林. 基于Sinkhorn距离特征缩放的多约束非负矩阵分解算法[J]. 电子与信息学报, 2022, 44(12): 4384-4394. doi: 10.11999/JEIT210946
引用本文: 李松涛, 李维刚, 甘平, 蒋林. 基于Sinkhorn距离特征缩放的多约束非负矩阵分解算法[J]. 电子与信息学报, 2022, 44(12): 4384-4394. doi: 10.11999/JEIT210946
LI Songtao, LI Weigang, GAN Pin, JIANG Lin. Multi-constrained Non-negative Matrix Factorization Algorithm Based on Sinkhorn Distance Feature Scaling[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4384-4394. doi: 10.11999/JEIT210946
Citation: LI Songtao, LI Weigang, GAN Pin, JIANG Lin. Multi-constrained Non-negative Matrix Factorization Algorithm Based on Sinkhorn Distance Feature Scaling[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4384-4394. doi: 10.11999/JEIT210946

基于Sinkhorn距离特征缩放的多约束非负矩阵分解算法

doi: 10.11999/JEIT210946
基金项目: 国家重点研发计划(2019YFB1310000),湖北省揭榜制科技项目(2020BED003),湖北省重点研发计划(2020BAB098)
详细信息
    作者简介:

    李松涛:男,博士生,研究方向为多媒体数据降维与模式感知算法

    李维刚:男,教授,研究方向为人工智能与机器学习算法

    甘平:男,硕士生,研究方向为小样本学习与度量学习

    蒋林:男,教授,研究方向为室内移动机器人地图构建、定位、导航及液压机器人

    通讯作者:

    李维刚 liweigang.luck@foxmail.com

  • 中图分类号: TN911.73; TP391

Multi-constrained Non-negative Matrix Factorization Algorithm Based on Sinkhorn Distance Feature Scaling

Funds: The National Key R&D Program (2019YFB1310000), Hubei Province Science and Technology Projects (2020BED003), Hubei Province Key R&D Program (2020BAB098)
  • 摘要: 为了减少原始特征对非负矩阵分解(NMF)算法的共适应性干扰,并提高NMF的子空间学习能力与聚类性能,该文提出一种基于Sinkhorn距离特征缩放的多约束半监督非负矩阵分解算法。首先该算法通过Sinkhorn距离对原始输入矩阵进行特征缩放,提高空间内同类数据特征之间的关联性,然后结合样本标签信息的双图流形结构与范数稀疏约束作为双正则项,使分解后的基矩阵具有稀疏特性和较强的空间表达能力,最后,通过KKT条件对所提算法目标函数的进行优化推导,得到有效的乘法更新规则。通过在多个图像数据集以及平移噪声数据上的聚类实验结果对比分析,该文所提算法具有较强的子空间学习能力,且对平移噪声有更强的鲁棒性。
  • 图  1  S3GNMF算法示意图

    图  2  PIE数据集

    图  3  Pixraw10P数据集

    图  4  JAFFE数据集

    图  5  COIL20数据集与平移噪声数据集对比

    图  6  Faces95数据集与平移噪声数据集对比

    图  7  S3GNMF在5个标准数据集上的参数表现

    表  1  基于Sinkhorn距离特征缩放的多约束非负矩阵分解算法S3GNMF (算法1)

     输入:原始矩阵${\boldsymbol{X}}$,聚类数$ k $,流形正则化系数$ \lambda $和$ \beta $,稀疏约束
        系数$ \theta $和最大迭代次数$ M $
     (1)对原始矩阵${\boldsymbol{X}}$进行特征缩放得到矩阵${\boldsymbol{S}}$;
     (2)随机初始化基矩阵${\boldsymbol{U}}$和辅助矩阵${\boldsymbol{Z}}$;
     (3)更新${\boldsymbol{U}}$ ${ {\boldsymbol{u} }_{ij} } \leftarrow { {\boldsymbol{u} }_{ij} }\dfrac{ { { {\left( { {\boldsymbol{SAZ} } + \beta { {\boldsymbol{W} }_{\boldsymbol{U} } }{\boldsymbol{U} } } \right)}_{ij} } } }{ { { {\left( { { {\boldsymbol{UZ} }^{\rm{T} } }{ {\boldsymbol{A} }^{\rm{T} } }{\boldsymbol{AZ} } + \beta { {\boldsymbol{D} }_{\boldsymbol{U} } }{\boldsymbol{U} } + \theta {\boldsymbol{U} } } \right)}_{ij} } } }$;
     (4)更新${\boldsymbol{Z}}$ ${ {\boldsymbol{z} }_{ij} } \leftarrow { {\boldsymbol{z} }_{ij} }\dfrac{ { { {\left( { { {\boldsymbol{A} }^{\text{T} } }{ {\boldsymbol{S} }^{\text{T} } }{\boldsymbol{U} } + \lambda { {\boldsymbol{A} }^{\text{T} } }{ {\boldsymbol{W} }_{\boldsymbol{Z} } }{\boldsymbol{AZ} } } \right)}_{ij} } } }{ { { {\left( { { {\boldsymbol{A} }^{\text{T} } }{ {\boldsymbol{AZU} }^{\text{T} } }{\boldsymbol{U} } + \lambda { {\boldsymbol{A} }^{\text{T} } }{ {\boldsymbol{D} }_{\boldsymbol{Z} } }{\boldsymbol{AZ} } } \right)}_{ij} } } }$;
     (5)执行算法步骤(3)和步骤(4) 至最大迭代次数或收敛;
     输出:矩阵${\boldsymbol{U}}$和${\boldsymbol{Z}}$
    下载: 导出CSV

    表  2  各数据集的详细说明

    数据集名称维度大小类别数总样本数数据集类型
    COIL201024201440物品
    PIE1024682586人脸
    Faces95409620400人脸
    Pixraw10P1000010100人脸
    JAFFE67610213人脸
    COIL20-noise1024201440人脸+平移噪声
    Faces95-noise409620400人脸+平移噪声
    下载: 导出CSV

    表  3  各算法在标准数据集上的对比(%)

    数据集NMFCNMFGNMFSNMFSDNMFDSDNMFSODNMFAGNMFONMFDENMFS3GNMF
    COIL2064.2±2.469.6±1.668.1±1.566.9±1.271.2±1.072.1±1.378.9±0.873.1±1.166.0±1.574.7±1.784.1±0.9
    77.0±1.479.8±1.380.8±1.071.8±2.078.6±1.479.7±0.886.1±1.581.0±0.670.9±2.282.6±1.791.6±1.3
    PIE71.3±0.768.8±0.872.4±0.971.9±0.874.6±0.875.2±0.679.3±1.875.8±1.174.1±1.577.2±1.481.5±0.8
    67.9±0.770.7±0.880.5±0.972.8±0.882.1±0.581.2±0.785.3±0.582.4±0.676.0±2.084.1±1.891.8±0.8
    Faces9543.7±1.248.6±1.750.2±2.349.5±1.851.2±2.050.6±1.853.9±1.552.2±1.149.2±1.153.6±0.955.1±1.7
    50.8±0.657.0±1.357.7±1.555.0±1.360.7±1.258.1±1.160.7±0.860.3±1.055.3±1.060.1±1.662.3±1.1
    Pixraw10P68.7±1.880.4±1.787.4±2.371.4±1.183.7±2.484.0±2.089.0±3.684.4±2.076.3±2.484.3±2.990.8±3.8
    73.8±1.583.8±1.288.0±1.473.7±1.684.0±1.684.7±1.889.7±2.986.0±1.878.7±1.686.0±2.793.8±0.7
    JAFFE66.2±1.881.1±2.782.8±1.276.2±0.880.1±1.080.4±0.890.8±1.981.4±1.577.5±1.290.1±0.598.1±0.2
    68.9±1.582.8±1.984.0±1.478.0±0.681.7±1.382.0±0.892.1±1.483.7±1.380.0±1.188.7±0.697.4±0.4
    下载: 导出CSV

    表  4  各算法在平移噪声COIL20数据集上的对比(%)

    $ \omega $NMFCNMFGNMFSNMFSDNMFDSDNMFSODNMFAGNMFONMFDENMFS3GNMF
    163.2±2.267.6±1.269.0±1.567.4±1.572.3±1.574.1±1.875.1±1.271.7±1.465.7±2.272.7±2.787.2±2.1
    75.0±1.477.2±1.380.5±1.170.5±1.379.3±1.179.9±0.984.0±1.178.8±0.768.1±1.474.7±1.994.6±0.5
    252.1±2.355.2±1.557.7±1.356.8±1.668.6±1.870.1±2.263.4±1.662.7±1.654.0±2.761.8±2.673.2±2.5
    66.7±1.669.1±1.575.7±1.273.9±1.480.0±1.582.6±1.576.1±1.275.5±0.871.7±1.474.5±1.385.5±0.9
    349.8±1.850.0±1.358.2±1.155.6±1.860.4±1.958.8±2.257.2±1.756.6±2.054.9±2.055.0±2.363.8±1.9
    58.8±0.961.9±1.669.8±1.160.7±1.673.4±0.973.1±1.370.9±0.968.4±1.160.4±1.470.1±2.180.8±0.6
    443.5±1.946.7±2.448.9±1.647.3±2.052.5±2.353.3±2.551.8±1.750.9±2.347.1±2.151.9±1.957.6±2.2
    55.2±1.158.0±1.662.2±1.260.8±1.270.9±0.671.3±1.165.9±0.863.0±1.460.4±1.564.7±1.774.7±0.8
    下载: 导出CSV

    表  5  各算法在平移噪声Faces95数据集上的对比(%)

    $ \omega $NMFCNMFGNMFSNMFSDNMFDSDNMFSODNMFAGNMFONMFDENMFS3GNMF
    145.1±0.746.2±2.249.6±1.848.2±1.254.1±2.153.8±2.549.3±1.448.2±1.347.1±1.848.8±1.753.4±1.3
    53.7±0.658.6±1.860.3±1.555.9±0.965.8±1.762.7±1.255.2±1.758.4±1.853.4±1.658.0±1.463.9±0.8
    244.1±1.043.1±1.745.6±1.343.5±1.248.9±2.049.2±2.146.9±1.346.2±1.142.9±1.947.2±1.353.2±0.6
    51.8±0.750.2±0.853.1±1.149.9±0.658.1±1.759.3±1.550.2±0.749.7±1.249.1±1.250.6±1.762.5±0.7
    338.5±1.137.9±1.341.8±1.538.5±1.145.8±1.747.3±1.943.2±1.742.9±2.238.9±2.244.2±1.549.8±1.5
    45.1±0.843.7±0.744.7±1.145.9±0.653.1±1.355.7±1.346.8±0.946.4±1.845.4±1.849.4±2.059.9±1.0
    434.1±1.233.7±1.538.3±1.734.2±1.238.9±1.639.4±1.739.9±1.738.5±1.834.5±1.840.1±1.643.5±1.3
    40.4±1.140.0±0.945.9±0.839.7±0.547.5±1.148.0±0.947.1±0.946.2±0.939.2±1.347.3±1.953.4±0.7
    下载: 导出CSV

    表  6  S2GNMF与S3GNMF的聚类效果对比(%)

    数据集PIEPixraw10PJAFFECOIL20COIL20
    ($ \omega $=2)
    COIL20
    ($ \omega $=4)
    Faces95Faces95
    ($ \omega $=2)
    Faces95
    ($ \omega $=4)
    S2GNMF77.6±1.183.7±3.790.7±0.781.5±1.469.0±2.955.3±2.051.0±2.248.7±1.138.3±0.9
    90.2±0.385.4±1.292.9±0.889.9±0.485.1±0.672.1±1.161.8±1.058.6±0.648.2±0.6
    S3GNMF81.5±0.890.8±3.898.1±0.284.1±0.973.2±2.557.6±2.255.1±1.753.2±0.643.5±1.3
    91.8±0.893.8±0.797.4±0.491.6±1.385.5±0.974.7±0.862.3±1.162.5±0.753.4±0.7
    下载: 导出CSV

    表  7  各算法在不同数据集的运算速度对比(s)

    数据集NMFCNMFGNMFSNMFSDNMFDSDNMFSODNMFAGNMFONMFDENMFS3GNMF
    COIL200.161.170.240.14161.52165.940.5426.740.212.821.25
    PIE0.542.330.690.46328.17340.751.3840.880.697.012.61
    Faces950.080.650.130.07108.41132.670.3820.620.233.530.43
    Pixraw10P0.141.020.190.14138.45155.900.4137.610.121.670.29
    JAFFE0.040.410.080.0382.0794.740.2017.840.071.420.17
    下载: 导出CSV
  • [1] 钱智明, 钟平, 王润生. 基于图正则化与非负组稀疏的自动图像标注[J]. 电子与信息学报, 2015, 37(4): 784–790. doi: 10.11999/JEIT141282

    QIAN Zhiming, ZHONG Ping, and WANG Runsheng. Automatic image annotation via graph regularization and non-negative group sparsity[J]. Journal of Electronics &Information Technology, 2015, 37(4): 784–790. doi: 10.11999/JEIT141282
    [2] 刘正, 张国印, 陈志远. 基于特征加权和非负矩阵分解的多视角聚类算法[J]. 电子学报, 2016, 44(3): 535–540. doi: 10.3969/j.issn.0372-2112.2016.03.006

    LIU Zheng, ZHANG Guoyin, and CHEN Zhiyuan. A Multiview clustering algorithm based on feature weighting and non-negative matrix factorization[J]. Acta Electronica Sinica, 2016, 44(3): 535–540. doi: 10.3969/j.issn.0372-2112.2016.03.006
    [3] 马源培, 杨卓璇, 李慧嘉. 结合Bass模型和LTV的创新产品扩散预测[J]. 聊城大学学报:自然科学版, 2020, 33(4): 26–32.

    MA Peiyuan, YANG Zhuoxuan, and LI Huijia. Innovative product diffusion forecasting combined bass model and LTV[J]. Journal of Liaocheng University:Natural Science Edition, 2020, 33(4): 26–32.
    [4] JIA Yuheng, KWONG S, HOU Junhui, et al. Semi-supervised non-negative matrix factorization with dissimilarity and similarity regularization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(7): 2510–2521.
    [5] 邱飞岳, 陈博文, 陈铁明, 等. 稀疏诱导流形正则化凸非负矩阵分解算法[J]. 通信学报, 2020, 41(5): 84–95. doi: 10.11959/j.issn.1000-436x.2020064

    QIU Feiyue, CHEN Bowen, CHEN Tieming, et al. Sparsity induced convex nonnegative matrix factorization algorithm with manifold regularization[J]. Journal on Communications, 2020, 41(5): 84–95. doi: 10.11959/j.issn.1000-436x.2020064
    [6] 陈善学, 刘荣华. 基于子空间结构正则化的L21非负矩阵分解高光谱解混[J]. 电子与信息学报, 2022, 44(5): 1704–1713. doi: 10.11999/JEIT210232

    CHEN Shanxue and LIU Ronghua. L21 Nonnegative matrix factorization based on subspace structure regularization for hyperspectral unmixing[J]. Journal of Electronics &Information Technology, 2022, 44(5): 1704–1713. doi: 10.11999/JEIT210232
    [7] CHEN Wensheng, LIU Jingmin, PAN Binbin, et al. Face recognition using nonnegative matrix factorization with fractional power inner product kernel[J]. Neurocomputing, 2019, 348: 40–53. doi: 10.1016/j.neucom.2018.06.083
    [8] YANG Zhen, CHEN Weitong, and HUANG Jian. Enhancing recommendation on extremely sparse data with blocks-coupled non-negative matrix factorization[J]. Neurocomputing, 2018, 278: 126–133. doi: 10.1016/j.neucom.2017.04.080
    [9] SHIRDHONKAR S and JACOBS D W. Approximate earth mover’s distance in linear time[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8.
    [10] CAI Deng, HE Xiaofei, HAN Jiawei, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1548–1560. doi: 10.1109/TPAMI.2010.231
    [11] QIAN Wei, HONG Bin, CAI Deng, et al. Non-negative matrix factorization with Sinkhorn distance[C]. The 25th International Joint Conference on Artificial Intelligence, New York, USA, 2016: 1960–1966.
    [12] HOYER P O. Non-negative matrix factorization with sparseness constraints[J]. Journal of Machine Learning Research, 2004, 5(9): 1457–1469.
    [13] LIU Haifeng, WU Zhaohui, LI Xuelong, et al. Constrained nonnegative matrix factorization for image representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1299–1311. doi: 10.1109/TPAMI.2011.217
    [14] LI Dong, ZHANG Baoxian, YAO Zheng, et al. A feature scaling based k-nearest neighbor algorithm for indoor positioning system[C]. 2014 IEEE Global Communications Conference, Austin, USA, 2014: 436–441.
    [15] JIMÉNEZ-CORDERO A and MALDONADO S. Automatic feature scaling and selection for support vector machine classification with functional data[J]. Applied Intelligence, 2021, 51(1): 161–184.
    [16] RUBNER Y, TOMASI C, and GUIBAS L J. The earth mover’s distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40(2): 99–121. doi: 10.1023/A:1026543900054
    [17] CUTURI M. Sinkhorn distances: Lightspeed computation of optimal transport[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, Spain, 2013: 2292–2300.
    [18] FROGNER C, ZHANG Chiyuan, MOBAHI H, et al. Learning with a Wasserstein loss[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2053–2061.
    [19] HUANG Shudong, WANG Hongjun, LI Tao, et al. Robust graph regularized nonnegative matrix factorization for clustering[J]. Data Mining and Knowledge Discovery, 2018, 32(2): 483–503. doi: 10.1007/s10618-017-0543-9
    [20] XU Zongben, CHANG Xiangyu, XU Fengmin, et al. L1/2 regularization: A thresholding representation theory and a fast solver[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7): 1013–1027. doi: 10.1109/TNNLS.2012.2197412
    [21] LEE D D and SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788–791. doi: 10.1038/44565
    [22] ZHANG Yunmeng, SHU Zhenqiu, ZHANG Jie, et al. Dual Graph regularized NMF with Sinkhorn Distance[C]. The 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science, Xuzhou, China, 2020: 146–149.
    [23] MENG Yang, SHANG Ronghua, JIAO Licheng, et al. Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints[J]. Engineering Applications of Artificial Intelligence, 2018, 69: 24–35. doi: 10.1016/j.engappai.2017.11.008
    [24] ZHANG Lin, LIU Zhonghua, PU Jiexin, et al. Adaptive graph regularized nonnegative matrix factorization for data representation[J]. Applied Intelligence, 2020, 50(2): 438–447. doi: 10.1007/s10489-019-01539-9
    [25] CHOI S. Algorithms for orthogonal nonnegative matrix factorization[C]. Proceedings of 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, China, 2008: 1828–1832.
    [26] WU Wenhui, KWONG S, HOU Junhui, et al. Simultaneous dimensionality reduction and classification via dual embedding regularized nonnegative matrix factorization[J]. IEEE Transactions on Image Processing, 2019, 28(8): 3836–3847. doi: 10.1109/TIP.2019.2907054
    [27] LIANG Naiyao, YANG Zuyuan, LI Zhenni, et al. Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints[J]. Knowledge-Based Systems, 2020, 194: 105582. doi: 10.1016/j.knosys.2020.105582
    [28] QIU Xiru, CHEN Zhikui, ZHAO Liang, et al. Unsupervised multi-view non-negative for law data feature learning with dual graph-regularization in smart Internet of Things[J]. Future Generation Computer Systems, 2019, 100: 523–530. doi: 10.1016/j.future.2019.05.055
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  1296
  • HTML全文浏览量:  847
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2021-11-18
  • 录用日期:  2021-11-23
  • 网络出版日期:  2021-11-26
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回