高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于梯度指导的生成对抗网络内镜图像去模糊重建

时永刚 张岳 周治国 李祎 夏卓岩

时永刚, 张岳, 周治国, 李祎, 夏卓岩. 基于梯度指导的生成对抗网络内镜图像去模糊重建[J]. 电子与信息学报, 2022, 44(1): 70-77. doi: 10.11999/JEIT210920
引用本文: 时永刚, 张岳, 周治国, 李祎, 夏卓岩. 基于梯度指导的生成对抗网络内镜图像去模糊重建[J]. 电子与信息学报, 2022, 44(1): 70-77. doi: 10.11999/JEIT210920
SHI Yonggang, ZHANG Yue, ZHOU Zhiguo, LI Yi, XIA Zhuoyan. Deblurring and Restoration of Gastroscopy Image Based on Gradient-guidance Generative Adversarial Networks[J]. Journal of Electronics & Information Technology, 2022, 44(1): 70-77. doi: 10.11999/JEIT210920
Citation: SHI Yonggang, ZHANG Yue, ZHOU Zhiguo, LI Yi, XIA Zhuoyan. Deblurring and Restoration of Gastroscopy Image Based on Gradient-guidance Generative Adversarial Networks[J]. Journal of Electronics & Information Technology, 2022, 44(1): 70-77. doi: 10.11999/JEIT210920

基于梯度指导的生成对抗网络内镜图像去模糊重建

doi: 10.11999/JEIT210920
基金项目: 国家自然科学基金(60971133,61271112)
详细信息
    作者简介:

    时永刚:男,1969年生,副教授,研究方向为医学图像处理、目标检测识别、目标分类、图像复原和超分辨率重建

    张岳:男,1996年生,硕士生,研究方向为医学图像处理

    周治国:男,1977年生,副教授,研究方向为智能感知与导航

    李祎:女,1996年生,硕士生,研究方向为医学图像处理

    夏卓岩:男,1997年生,硕士生,研究方向目标检测

    通讯作者:

    时永刚 ygshi@bit.edu.cn

  • 中图分类号: R331; TN911.73

Deblurring and Restoration of Gastroscopy Image Based on Gradient-guidance Generative Adversarial Networks

Funds: The National Natural Science Foundation of China (60971133, 61271112)
  • 摘要: 胃肠镜检查是目前临床上检查和诊断消化道疾病最重要的途径,内窥镜图像的运动模糊会对医生诊断和机器辅助诊断造成干扰。现有的去模糊网络由于缺乏对结构信息的关注,在处理内窥镜图像时普遍存在着伪影和结构变形的问题。为解决这一问题,提高胃镜图像质量,该文提出一种基于梯度指导的生成对抗网络,网络以多尺度残差网络(Res2net)结构作为基础模块,包含图像信息支路和梯度支路两个相互交互的支路,通过梯度支路指导图像去模糊重建,从而更好地保留图像结构信息,消除伪影、缓解结构变形;设计了类轻量化预处理网络来纠正过度模糊,提高训练效率。在传统胃镜和胶囊胃镜数据集上分别进行了实验,实验结果表明,该算法的峰值信噪比(PSNR)和结构相似度(SSIM)指标均优于对比算法,且复原后的视觉效果更佳,无明显伪影和结构变形。
  • 图  1  梯度指导生成对抗网络生成器结构图

    图  2  梯度指导生成对抗网络判别器结构图

    图  3  预处理模块的网络结构

    图  4  本文网络整体结构

    图  5  不同算法在传统胃镜数据集上的图像测试结果

    图  6  不同算法在胶囊胃镜数据集上的图像测试结果

    表  1  不同算法在传统胃镜数据集上的指标测试结果

    SRN-DeblurNet改进SPSRDeblurGAN-v2本文算法
    峰值信噪比(PSNR)26.4026.4726.5526.89
    结构相似度(SSIM)0.7990.8150.8180.849
    下载: 导出CSV

    表  2  不同算法在胶囊胃镜数据集上的指标测试结果

    SRN-DeblurNet改进SPSRDeblurGAN-v2本文算法
    峰值信噪比(PSNR)迁移26.9328.3328.7928.83
    训练28.0128.7028.8129.04
    结构相似度(SSIM)迁移0.7770.7670.7830.801
    训练0.7950.7710.8130.826
    下载: 导出CSV
  • [1] All cancers source: Globocan 2020[EB/OL]. https://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf, 2020.
    [2] MAHESH M M R, RAJAGOPALAN A N, and SEETHARAMAN G. Going unconstrained with rolling shutter deblurring[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 4030–4038.
    [3] TAO Xin, GAO Hongyun, SHEN Xiaoyong, et al. Scale-recurrent network for deep image deblurring[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8174–8182.
    [4] KUPYN O, BUDZAN V, MYKHAILYCH M, et al. DeblurGAN: Blind motion deblurring using conditional adversarial networks[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8183–8192.
    [5] KUPYN O, MARTYNIUK T, WU Junru, et al. DeblurGAN-v2: Deblurring (orders-of-magnitude) faster and better[C]. The IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 8877–8886.
    [6] YAN Qing, XU Yi, YANG Xiaokang, et al. Single image superresolution based on gradient profile sharpness[J]. IEEE Transactions on Image Processing, 2015, 24(10): 3187–3202. doi: 10.1109/TIP.2015.2414877
    [7] ZHU Yu, ZHANG Yanning, BONEV B, et al. Modeling deformable gradient compositions for single-image super-resolution[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5417–5425.
    [8] MA Cheng, RAO Yongming, CHENG Ye’an, et al. Structure-preserving super resolution with gradient guidance[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 7766–7775.
    [9] TRAN P, TRAN A T, PHUNG Q, et al. Explore image deblurring via encoded blur kernel space[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 11951–11960.
    [10] CHI Zhixiang, WANG Yang, YU Yuanhao, et al. Test-time fast adaptation for dynamic scene deblurring via meta-auxiliary learning[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 9133–9142.
    [11] CHEN Liang, ZHANG Jiawei, PAN Jinshan, et al. Learning a non-blind deblurring network for night blurry images[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10537–10545.
    [12] DONG Jiangxin, ROTH S, and SCHIELE B. Learning spatially-variant MAP models for non-blind image deblurring[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 4884–4893.
    [13] GAO Shanghua, CHENG Mingming, ZHAO Kai, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652–662. doi: 10.1109/TPAMI.2019.2938758
    [14] WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]. The European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 2019: 63–79.
    [15] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269.
    [16] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1–14.
    [17] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [18] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
    [19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [20] ALI S, ZHOU F, DAUL C, et al. Endoscopy artifact detection (EAD 2019) challenge dataset[EB/OL]. https://arxiv.org/abs/1905.03209, 2019.
    [21] KOULAOUZIDIS A, IAKOVIDIS D K, YUNG D E, et al. KID Project: An internet-based digital video atlas of capsule endoscopy for research purposes[J]. Endoscopy International Open, 2017, 5(6): E477–E483. doi: 10.1055/s-0043-105488
    [22] HORÉ A and ZIOU D. Image quality metrics: PSNR vs. SSIM[C]. 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010: 2366–2369.
    [23] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
    [24] KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  383
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 修回日期:  2021-12-26
  • 录用日期:  2021-12-28
  • 网络出版日期:  2022-01-04
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回