高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LRSAR-Net语义分割模型用于新冠肺炎CT图片辅助诊断

张桃红 郭徐徐 张颖

张桃红, 郭徐徐, 张颖. LRSAR-Net语义分割模型用于新冠肺炎CT图片辅助诊断[J]. 电子与信息学报, 2022, 44(1): 48-58. doi: 10.11999/JEIT210917
引用本文: 张桃红, 郭徐徐, 张颖. LRSAR-Net语义分割模型用于新冠肺炎CT图片辅助诊断[J]. 电子与信息学报, 2022, 44(1): 48-58. doi: 10.11999/JEIT210917
ZHANG Taohong, GUO Xuxu, ZHANG Ying. LRSAR-Net Semantic Segmentation Model for Computer Aided Diagnosis for Covid-19 CT Image[J]. Journal of Electronics & Information Technology, 2022, 44(1): 48-58. doi: 10.11999/JEIT210917
Citation: ZHANG Taohong, GUO Xuxu, ZHANG Ying. LRSAR-Net Semantic Segmentation Model for Computer Aided Diagnosis for Covid-19 CT Image[J]. Journal of Electronics & Information Technology, 2022, 44(1): 48-58. doi: 10.11999/JEIT210917

LRSAR-Net语义分割模型用于新冠肺炎CT图片辅助诊断

doi: 10.11999/JEIT210917
基金项目: 科技部国家重点研发计划(2018YFC1707410)
详细信息
    作者简介:

    张桃红:女,1973年生,博士,副教授,研究方向为机器视觉、深度学习

    郭徐徐:男,1996年生,硕士生,研究方向为机器视觉、深度学习

    张颖:女,1986年生,硕士,研究方向为机器视觉、深度学习

    通讯作者:

    张桃红 zth_ustb@163.com

  • 中图分类号: TN911.73; TP391.41

LRSAR-Net Semantic Segmentation Model for Computer Aided Diagnosis for Covid-19 CT Image

Funds: The National Key Research and Development Program of China (2018YFC1707410)
  • 摘要: 自2019年末新型冠状病毒(Covid-19)疫情在全球爆发以来,世界各国都处于疫情的危害之下。新冠病毒通过入侵人体的呼吸系统,造成肺部感染,甚至死亡。CT(Computed Tomography)图是医生对肺炎患者进行诊断的常规方法。为了提高医生对新冠感染者进行诊断的效率,该文提出一种基于低秩张量自注意力重构的语义分割网络LRSAR-Net,其中低秩张量自注意力重构模块用来获取长范围的信息。低秩张量自注意力重构模块主要包括:低秩张量生成子模块、低秩自注意力子模块、高秩张量重构子模块3个部分。低秩张量自注意力模块先生成多个低秩张量,构建低秩自注意力特征图,然后将多个低秩张量注意力特征图重构成高秩注意力特征图。自注意力模块通过计算相似度矩阵来获取长范围的语义信息。与传统的自注意力模块Non-Local相比,低秩张量自注意力重构模块计算复杂度更低,计算速度更快。最后,该文与其他优秀的语义分割模型进行了对比,体现了模型的有效性。
  • 图  1  LRSAR-Net网络结构图

    图  2  解码层的上采样结构和通道注意力

    图  3  低秩张量生成子模块

    图  4  低秩自注意力子模块

    图  5  高秩张量重构子模块

    图  6  Covid-19患者肺部CT图片

    图  7  ED Net训练过程中的准确率Acc、平均交并比mIoU和损失的变化

    图  8  LRSAR-Net训练过程中的准确率Acc、平均交并比mIoU和损失的变化

    图  9  实验分割结果

    表  1  不同的特征提取网络的模型对比DataSet

    数据集图片数量Covid-19 数量
    Covid-19 CT100100100
    Covid-19 P9829373
    下载: 导出CSV

    表  2  注意力模块的影响

    模型Train_mIoU(%)Train_Acc(%)Test_mIoU(%)Test_Acc(%)参数量(M)FLOPs(G)
    ED Net73.796.965.494.732.5110.59
    +Non-Local72.496.967.094.6+34.27+2.56
    +LRSAR74.097.069.095.0+17.13+1.28
    +SE74.997.069.195.3+1.3+0.02
    Reco Net[18]73.496.967.594.5113.8516.35
    LRSAR-Net73.797.170.095.150.9411.88
    下载: 导出CSV

    表  3  不同的特征提取网络的模型对比

    模型Train_mIoU(%)Train_Acc(%)Test_mIoU(%)Test_Acc(%)参数量(M)FLOPs(G)
    ResNet5074.797.270.095.150.9411.88
    MobileNetV2[27]74.096.968.094.925.064.68
    InceptionV4[28]75.897.170.995.567.2216.67
    Xception[29]75.697.169.095.247.2011.86
    下载: 导出CSV

    表  4  不同的语义分割网络之间的对比

    模型Train_mIoU(%)Train_Acc(%)Test_mIoU(%)Test_Acc(%)参数量(M)FLOPs(G)
    U-Net[30]73.796.965.494.732.510.6
    U-Net++[31]73.796.766.194.948.957.4
    DeepLabV3[32]71.696.566.094.139.640.8
    DeepLabV3+[33]73.397.165.794.6269.1
    PSPNet[34]71.696.767.394.32.22.8
    Reco-Net[18]73.496.967.594.5113.8516.35
    LRSAR-Net73.796.870.095.134.210.8
    下载: 导出CSV
  • [1] MUNUSAMY H, MUTHUKUMAR K J, GNANAPRAKASAM S, et al. FractalCovNet architecture for COVID-19 Chest X-ray image classification and CT-scan image Segmentation[J]. Biocybernetics and Biomedical Engineering, 2021, 41(3): 1025–1038. doi: 10.1016/j.bbe.2021.06.011
    [2] ILESANMI A E, CHAUMRATTANAKUL U, and MAKHANOV S S. A method for segmentation of tumors in breast ultrasound images using the variant enhanced deep learning[J]. Biocybernetics and Biomedical Engineering, 2021, 41(2): 802–818. doi: 10.1016/j.bbe.2021.05.007
    [3] HAMBARDE P, TALBAR S, MAHAJAN A, et al. Prostate lesion segmentation in MR images using radiomics based deeply supervised U-Net[J]. Biocybernetics and Biomedical Engineering, 2020, 40(4): 1421–1435. doi: 10.1016/j.bbe.2020.07.011
    [4] KHANNA A, LONDHE N D, GUPTA S, et al. A deep Residual U-Net convolutional neural network for automated lung segmentation in computed tomography images[J]. Biocybernetics and Biomedical Engineering, 2020, 40(3): 1314–1327. doi: 10.1016/j.bbe.2020.07.007
    [5] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017.
    [6] WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7794–7803.
    [7] LI Chen, TAN Yusong, CHEN Wei, et al. ANU-Net: Attention-based nested U-Net to exploit full resolution features for medical image segmentation[J]. Computers & Graphics, 2020, 90: 11–20. doi: 10.1016/j.cag.2020.05.003
    [8] FAN Dengping, ZHOU Tao, JI Gepeng, et al. Inf-Net: Automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2626–2637. doi: 10.1109/TMI.2020.2996645
    [9] LIU Zhihua, TONG Lei, CHEN Long, et al. CANet: Context aware network for brain glioma segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40(7): 1763–1777. doi: 10.1109/TMI.2021.3065918
    [10] DOU Haoran, KARIMI D, ROLLINS C K, et al. A deep attentive convolutional neural network for automatic cortical plate segmentation in fetal MRI[J]. IEEE Transactions on Medical Imaging, 2021, 40(4): 1123–1133. doi: 10.1109/TMI.2020.3046579
    [11] JIANG Yi, CHEN Weixun, LIU Min, et al. 3D neuron microscopy image segmentation via the ray-shooting model and a DC-BLSTM network[J]. IEEE Transactions on Medical Imaging, 2020, 40(1): 26–37. doi: 10.1109/TMI.2020.3021493
    [12] ZHANG Yuqiang, LIU Min, YU Fuhao, et al. An O-shape neural network with attention modules to detect junctions in biomedical images without segmentation[J]. IEEE Journal of Biomedical and Health Informatics, To be published.
    [13] CHEN Jieneng, LU Yongyi, YU Qihang, et al. TransUNet: Transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv: 2102.04306, 2021.
    [14] KOLDA T G and BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455–500. doi: 10.1137/07070111X
    [15] LEBEDEV V, GANIN Y, RAKHUBA M, et al. Speeding-up convolutional neural networks using fine-tuned CP-decomposition[C]. Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [16] WU Jia’nan. Compression of fully-connected layer in neural network by Kronecker product[C]. Proceedings of 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI), Chiang Mai, Thailand, 2016: 173–179.
    [17] SUN Weize, CHEN Shaowu, HUANG Lei, et al. Deep convolutional neural network compression via coupled tensor decomposition[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(3): 603–616. doi: 10.1109/JSTSP.2020.3038227
    [18] CHEN Wanli, ZHU Xinge, SUN Ruoqi, et al. Tensor low-rank reconstruction for semantic segmentation[C]. Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, 2020: 52–69.
    [19] ZHANG Yanbo, MOU Xuanqin, WANG Ge, et al. Tensor-based dictionary learning for spectral CT reconstruction[J]. IEEE Transactions on Medical Imaging, 2017, 36(1): 142–154. doi: 10.1109/TMI.2016.2600249
    [20] WU Weiwen, LIU Fenglin, ZHANG Yanbo, et al. Non-local low-rank cube-based tensor factorization for spectral CT reconstruction[J]. IEEE Transactions on Medical Imaging, 2019, 38(4): 1079–1093. doi: 10.1109/TMI.2018.2878226
    [21] HATVANIY J, MICHETTI J, BASARAB A, et al. Single image super-resolution of noisy 3d dental Ct images using tucker decomposition[C]. Proceedings of 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 2021: 1673–1676.
    [22] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778.
    [23] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
    [24] JENSSEN H B. COVID-19 CT segmentation dataset[EB/OL]. http://medicalsegmentation.com/ covid19/, 2020.
    [25] MedSeg[EB/OL].https://www.medseg.ai/.
    [26] KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [27] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510–4520.
    [28] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 4278–4284.
    [29] CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 1800–1807.
    [30] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015.
    [31] ZHOU Zongwei, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856–1867. doi: 10.1109/TMI.2019.2959609
    [32] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv: 1706.05587, 2017.
    [33] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018.
    [34] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 6230–6239.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  912
  • HTML全文浏览量:  568
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 修回日期:  2022-12-01
  • 录用日期:  2021-12-24
  • 网络出版日期:  2021-12-30
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回