高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的高分辨率食管测压图谱中食管收缩活力分类

贺福利 戴渝卓 李钊颖 粟日 曹聪 王姣菊 戴燎元 侯木舟 汪政

陆明泉, 肖先赐, 李乐民. 从GAR模型参数提取特征的数字调制识别新方法[J]. 电子与信息学报, 1999, 21(2): 145-151.
引用本文: 贺福利, 戴渝卓, 李钊颖, 粟日, 曹聪, 王姣菊, 戴燎元, 侯木舟, 汪政. 基于深度学习的高分辨率食管测压图谱中食管收缩活力分类[J]. 电子与信息学报, 2022, 44(1): 78-88. doi: 10.11999/JEIT210909
Lu Mingquan, Xiao Xianci, Li Lemin. A NEW DIGITAL MODULATION RECOGNITION METHOD USING FEATURES EXTRACTED FROM GAR MODEL PARAMETERS[J]. Journal of Electronics & Information Technology, 1999, 21(2): 145-151.
Citation: HE Fuli, DAI Yuzhuo, LI Zhaoying, SU Ri, CAO Cong, WANG Jiaoju, DAI Liaoyuan, HOU Muzhou, WANG Zheng. Deep Learned Esophageal Contraction Vigor Classification on High-resolution Manometry Images[J]. Journal of Electronics & Information Technology, 2022, 44(1): 78-88. doi: 10.11999/JEIT210909

基于深度学习的高分辨率食管测压图谱中食管收缩活力分类

doi: 10.11999/JEIT210909
基金项目: 中南大学研究生创新研究基金(2020zzts362),湖南省自然科学基金(2020JJ4105)
详细信息
    作者简介:

    贺福利:男,1981年生,副教授,硕士研究生导师,研究方向为复分析、Clifford分析、Riemann Hilbert问题及其相关、数学建模与应用

    戴渝卓:女,1997年生,硕士生,研究方向为医疗大数据、医疗图像处理、推荐系统、信息探索、人工智能算法

    曹聪:男,1993年生,博士生,研究方向为医疗大数据、人工智能算法、统计优化、机器学习

    王姣菊:女,1995年生,博士生,研究方向为医疗图像处理、深度学习、生成式对抗网络

    侯木舟:男,1965年生,教授,博士研究生导师,研究方向为区块链技术及应用、医学临床大数据分析,图像与异常信号的分析与检测

    汪政:男,1975年生,博士生,研究方向为计算机视觉与图像处理

    通讯作者:

    侯木舟 houmuzhou@sina.com

  • 中图分类号: TN911.73

Deep Learned Esophageal Contraction Vigor Classification on High-resolution Manometry Images

Funds: Graduate Student Innovation Foundation of Central South University (2020zzts362), The Natural Science Foundation of Hunan Province (2020JJ4105)
  • 摘要: 高分辨率食管测压技术(HRM)作为检测食管动力障碍性疾病(EMD)的金标准,已广泛应用于临床试验以辅助医生进行诊断治疗。随着患病率的上升,HRM图像的数据量爆炸式增长,加之EMD的诊断流程较为复杂,临床上EMD误诊事件时有发生。为了提高EMD诊断的准确性,希望搭建一个计算机辅助诊断(Computer Aided Diagnosis, CAD)系统帮助医生对HRM图像进行自动分析。由于食管收缩活力的异常是诊断EMD的重要依据,该文提出了一个深度学习模型(PoS-ClasNet)以完成对HRM图像的食管收缩活力分类任务,为今后机器代替人工诊断EMD奠定基础。PoS-ClasNet作为一个多任务卷积神经网络(CNN)由PoSNet和S-ClasNet构成。前者用于HRM图像中吞咽框的检测和提取任务,后者根据食管吞咽特征鉴别收缩活力类型。实验使用了4000幅专家标记的HRM图像,用于训练、验证和测试的图像分别占比为70%, 20%和10%。在测试集上,食管收缩活力分类器PoS-ClasNet的分类准确率高达93.25%,精度和召回率分别为93.39%和93.60%。结果表明PoS-ClasNet能较好地适应HRM图像数据的特性,在智能诊断食管收缩活力的任务中表现出了不俗的准确性和稳健性。将它应用在临床上辅助医生诊疗,会带来巨大的社会效益。
  • 图  1  高分辨率食管测压图谱数据集

    图  2  食管收缩活力类型

    图  3  受噪声污染的HRM图像

    图  4  预处理前后的HRM图像

    图  5  PoS-ClasNet的模型结构图

    图  6  所有分类模型的分类准确率柱状图

    图  7  各网络模型的ROC曲线

    图  8  S-ClasNet的学习曲线

    图  9  测试集上的3类收缩活力分类的ROC曲线

    图  10  测试集上的混淆矩阵

    表  1  不同分类模型对食管收缩活力分类的结果比较(均值±标准差)

    Inceptionresnetv2Inceptionv3Resnet50XceptionS-ClasNet
    损失训练集0.2284±0.08300.2784±0.08900.3317±0.08060.2514±0.06410.2574±0.0574
    验证集0.2480±0.05350.2784±0.09400.3203±0.08250.2524±0.04210.2503±0.0429
    准确率训练集0.9148±0.03390.8965±0.03760.8733±0.03180.9056±0.02780.9015±0.0249
    验证集0.9138±0.02470.8988±0.05240.8945±0.02480.9157±0.01690.9122±0.0162
    精度训练集0.9185±0.03110.9009±0.03380.8776±0.02990.9093±0.02530.9040±0.0250
    验证集0.9162±0.02470.9023±0.05200.8990±0.02190.9191±0.01590.9143±0.0164
    召回率/敏感性训练集0.9102±0.03910.8906±0.04400.8673±0.03460.9004±0.03320.8980±0.0294
    验证集0.9112±0.02460.8948±0.05420.8911±0.02780.9121±0.01750.9104±0.0167
    F1得分训练集0.9137±0.03580.8949±0.04000.8717±0.03260.9041±0.03000.9005±0.0278
    验证集0.9133±0.02460.8980±0.05320.8944±0.02480.9151±0.01670.9121±0.0165
    特异性训练集0.9599±0.01430.9515±0.01490.9397±0.01400.9554±0.01120.9527±0.0106
    验证集0.9584±0.01240.9516±0.02540.9500±0.01070.9599±0.00790.9573±0.0082
    下载: 导出CSV

    表  2  S-ClasNet在测试集上对食管收缩活力分类的结果比较

    收缩活力分类评判指标
    准确率(%)精度(%)召回率(%)F1得分
    正常收缩97.2596.4895.800.9614
    弱收缩93.2590.3789.710.9004
    失收缩96.0092.6894.210.9344
    S-ClasNet93.2593.1893.240.9321
    下载: 导出CSV
  • [1] BOWERS S P. Esophageal motility disorders[J]. Surgical Clinics of North America, 2015, 95(3): 467–482. doi: 10.1016/j.suc.2015.02.003
    [2] ZAMBITO G, ROETHER R, KERN B, et al. Is barium esophagram enough? Comparison of esophageal motility found on barium esophagram to high resolution manometry[J]. The American Journal of Surgery, 2021, 221(3): 575–577. doi: 10.1016/j.amjsurg.2020.11.028
    [3] KUNIEDA K, FUJISHIMA I, WAKABAYASHI H, et al. Relationship between tongue pressure and pharyngeal function assessed using high-resolution manometry in older dysphagia patients with sarcopenia: A pilot study[J]. Dysphagia, 2021, 36(1): 33–40. doi: 10.1007/s00455-020-10095-1
    [4] 李飞, 王美峰, 汤玉蓉, 等. 《食管动力障碍的测压(第4版芝加哥分类)》更新点解读[J]. 中华消化杂志, 2021, 41(7): 492–497. doi: 10.3760/cma.j.cn311367-20210323-00173
    [5] PANDOLFINO J E, FOX M R, BREDENOORD A J, et al. High-resolution manometry in clinical practice: Utilizing pressure topography to classify oesophageal motility abnormalities[J]. Neurogastroenterology & Motility, 2009, 21(8): 796–806. doi: 10.1111/j.1365-2982.2009.01311.x
    [6] SAWADA A, GUZMAN M, NIKAKI K, et al. Identification of different phenotypes of esophageal reflux hypersensitivity and implications for treatment[J]. Clinical Gastroenterology and Hepatology, 2021, 19(4): 690–698.E2. doi: 10.1016/j.cgh.2020.03.063
    [7] KAHRILAS P J, BREDENOORD A J, FOX M, et al. The Chicago Classification of esophageal motility disorders, v3.0[J]. Neurogastroenterology & Motility, 2015, 27(2): 160–174. doi: 10.1111/nmo.12477
    [8] GYAWALI C P. High resolution manometry: The Ray Clouse legacy[J]. Neurogastroenterology & Motility, 2012, 24(S1): 2–4. doi: 10.1111/j.1365-2982.2011.01836.x
    [9] SCHMIDHUBER J. Deep learning in neural networks[J]. Neural Networks, 2015, 61: 85–117. doi: 10.1016/j.neunet.2014.09.003
    [10] LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    [11] KOU Wenjun, CARLSON D A, BAUMANN A J, et al. A deep-learning-based unsupervised model on esophageal manometry using variational autoencoder[J]. Artificial Intelligence in Medicine, 2021, 112: 102006. doi: 10.1016/j.artmed.2020.102006
    [12] CARLSON D A, KOU Wenjun, ROONEY K P, et al. Achalasia subtypes can be identified with functional luminal imaging probe (FLIP) panometry using a supervised machine learning process[J]. Neurogastroenterology & Motility, 2021, 33(3): e13932. doi: 10.1111/nmo.13932
    [13] 侯晓华. 消化道高分辨率测压图谱[M]. 北京: 科学出版社, 2014.

    HOU Xiaohua. High Resolution Manometry in Digestive Tract[M]. Beijing: Science Press, 2014.
    [14] RENA Y. High-resolution esophageal manometry: Interpretation in clinical practice[J]. Current Opinion in Gastroenterology, 2017, 33(4): 301–309. doi: 10.1097/MOG.0000000000000369
    [15] BREDENOORD A J and SMOUT A J. High-resolution manometry of the esophagus: More than a colorful view on esophageal motility?[J]. Expert Review of Gastroenterology & Hepatology, 2007, 1(1): 61–69. doi: 10.1586/17474124.1.1.61
    [16] LI Zewen, LIU Fan, YANG Wenjie, et al. A survey of convolutional neural networks: Analysis, applications, and prospects[J]. IEEE Transactions on Neural Networks and Learning Systems, To be published.
    [17] GU Jiuxiang, WANG Zhenhua, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 534–377. doi: 10.1016/j.patcog.2017.10.013
    [18] SARVAMANGALA D R and KULKARNI R V. Convolutional neural networks in medical image understanding: A survey[J]. Evolutionary Intelligence, 2021(4): 1–22. doi: 10.1007/s12065-020-00540-3
    [19] MOHAPATRA S, SWARNKAR T, and DAS J. Deep Convolutional Neural Network in Medical Image Processing[M]. BALAS V E, MISHRA B K, and KUMAR R. Handbook of Deep Learning in Biomedical Engineering. Amsterdam: Academic Press, 2021: 25–60.
    [20] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60–88. doi: 10.1016/j.media.2017.07.005
    [21] GREENSPAN H, VAN GINNEKEN B, and SUMMERS R M. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1153–1159. doi: 10.1109/TMI.2016.2553401
    [22] JANOWCZYK A and MADABHUSHI A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases[J]. Journal of Pathology Informatics, 2016, 7: 29. doi: 10.4103/2153-3539.186902
    [23] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
    [24] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv: 1409.1556, 2014.
    [25] GIRSHICK R. Fast R-CNN[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    [26] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [27] ZHANG Ziang, WU Chengdong, COLEMAN S, et al. DENSE-INception U-net for medical image segmentation[J]. Computer Methods and Programs in Biomedicine, 2020, 192: 105395. doi: 10.1016/j.cmpb.2020.105395
    [28] WANG Zheng, MENG Yu, WENG Futian, et al. An effective CNN method for fully automated segmenting subcutaneous and visceral adipose tissue on CT scans[J]. Annals of Biomedical Engineering, 2020, 48(1): 312–328. doi: 10.1007/s10439-019-02349-3
    [29] DROZDZAL M, VORONTSOV E, CHARTRAND G, et al. The importance of skip connections in biomedical image segmentation[C]. Proceedings of the 1st International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, Athens, Greece, 2016: 179–187.
    [30] IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 448–456.
    [31] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1026–1034.
    [32] KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2014.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  737
  • HTML全文浏览量:  441
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2021-11-30
  • 录用日期:  2021-12-20
  • 网络出版日期:  2021-12-27
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回