高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复阻抗咽造影的吞咽事件检测与智能识别方法

杨宇祥 余绍帅 林海军 李建闽 张甫

杨宇祥, 余绍帅, 林海军, 李建闽, 张甫. 基于复阻抗咽造影的吞咽事件检测与智能识别方法[J]. 电子与信息学报, 2022, 44(11): 3998-4007. doi: 10.11999/JEIT210897
引用本文: 杨宇祥, 余绍帅, 林海军, 李建闽, 张甫. 基于复阻抗咽造影的吞咽事件检测与智能识别方法[J]. 电子与信息学报, 2022, 44(11): 3998-4007. doi: 10.11999/JEIT210897
YANG Yuxiang, YU Shaoshuai, LIN Haijun, LI Jianmin, ZHANG Fu. Detection and Intelligent Recognition Method of Swallowing Events Based on Complex Impedance Pharyngography[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3998-4007. doi: 10.11999/JEIT210897
Citation: YANG Yuxiang, YU Shaoshuai, LIN Haijun, LI Jianmin, ZHANG Fu. Detection and Intelligent Recognition Method of Swallowing Events Based on Complex Impedance Pharyngography[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3998-4007. doi: 10.11999/JEIT210897

基于复阻抗咽造影的吞咽事件检测与智能识别方法

doi: 10.11999/JEIT210897
基金项目: 国家自然科学基金(32201134, 32171366, 31671002),湖南省自然科学基金(2021JJ30014, 2021JJ40359)
详细信息
    作者简介:

    杨宇祥:男,博士,教授,研究方向为生物医学信号检测与处理

    余绍帅:男,硕士生,研究方向为生物电阻抗测量与应用

    林海军:男,博士,教授,研究方向为智能检测与智能仪器

    李建闽:男,博士,讲师,研究方向为智能信息处理

    张甫:男,博士,讲师,研究方向为生物医学电子学

    通讯作者:

    张甫 fuzhang@hunnu.edu.cn

  • 中图分类号: TM93; R766

Detection and Intelligent Recognition Method of Swallowing Events Based on Complex Impedance Pharyngography

Funds: The National Natural Science Foundation of China (32201134, 32171366, 31671002), The Natural Science Foundation of Hunan Province (2021JJ30014, 2021JJ40359)
  • 摘要: 吞咽障碍早期筛查是降低吞咽障碍发病率的重要手段,而对吞咽事件(SE)的准确识别是吞咽障碍筛查和治疗过程中的关键环节。阻抗咽造影(IPG)是一种新型非侵入式吞咽事件检测方法,但现有的IPG技术仅检测阻抗幅值而忽略了同样重要的相位信息。为了实现对吞咽事件的全面检测及智能识别,该文提出一种基于整周期数字锁相放大原理的复阻抗咽造影(CIPG)检测方法,设计了基于FPGA的CIPG检测系统以连续描记吞咽过程的复阻抗(阻抗幅值和相位)信息,并设计了基于连续小波变换(CWT)和GoogLeNet相结合的吞咽事件智能识别算法。设计了包含喝水、干咽、吃面包、吃酸奶、咳嗽等5种吞咽事件的识别实验,实验结果表明,仅利用阻抗幅值信息时的吞咽事件识别准确率为86.1%,而同时利用阻抗幅值和相位信息时的识别准确率为95.7%,后者的识别准确率高于其它算法。该研究证实了CIPG技术和吞咽事件智能识别算法的有效性与优越性,为下一步开发基于CIPG的吞咽障碍早期筛查方法奠定了理论和技术基础。
  • 图  1  整周期数字锁相放大原理图

    图  2  复阻抗咽造影(CIPG)系统硬件原理结构图

    图  3  基于CWT与GoogLeNet的吞咽智能识别算法结构图

    图  4  某受试者的CIPG连续监测信号

    图  5  喝水和干咽事件所对应的CIPG阻抗幅值和相位变化时序图及其对应的2维RGB图像对比

    图  6  用于吞咽事件识别的混淆矩阵对比

    表  1  吞咽事件识别对比实验结果(%)

    评价标准基于幅值信息的识别基于幅值+相位信息的识别
    精确率P召回率RF1精确率P召回率RF1
    干咽82.087.484.693.796.695.1
    喝水90.092.391.194.792.393.4
    吃面包85.097.190.697.197.197.1
    吃酸奶87.062.572.796.996.996.9
    咳嗽91.395.593.3100.095.597.6
    下载: 导出CSV

    表  2  不同的吞咽事件识别方法性能对比

    算法所用传感器算法精确率或F1(%)
    Alshurafa等人[29]压电传感器小波变换、贝叶斯网络86.1
    Bi等人[18]麦克风传感器隐马尔可夫模型、决策树模型84.9
    Sazonov等人[30]麦克风传感器小波变换、支持向量机84.7
    Inoue等人[19]鼻插管式流量传感器和压电传感器线性预测编码、支持向量机82.4
    传统IPG方法[15]生物电阻抗传感小波变换、ANN90.1
    本文方法生物电阻抗传感小波变换、GoogLeNet网络95.7
    下载: 导出CSV
  • [1] JAYATILAKE D, UENO T, TERAMOTO Y, et al. Smartphone-based real-time assessment of swallowing ability from the swallowing sound[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2015, 3: 1–10. doi: 10.1109/JTEHM.2015.2500562
    [2] TOBIN A B, MIHNEA M, HILDENBRAND M, et al. Bolus rheology and ease of swallowing of particulated semi-solid foods as evaluated by an elderly panel[J]. Food & Function, 2020, 11(10): 8648–8658. doi: 10.1039/D0FO01728K
    [3] POWERS W J, RABINSTEIN A A, ACKERSON T, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2018, 49(3): e46–e99. doi: 10.1161/STR.0000000000000158
    [4] TEUSCHL Y, TRAPL M, RATAJCZAK P, et al. Systematic dysphagia screening and dietary modifications to reduce stroke-associated pneumonia rates in a stroke-unit[J]. Plos One, 2018, 13(2): e0192142. doi: 10.1371/journal.pone.0192142
    [5] 中国吞咽障碍康复评估与治疗专家共识组. 中国吞咽障碍评估与治疗专家共识(2017年版)第二部分 治疗与康复管理篇[J]. 中华物理医学与康复杂志, 2018, 40(1): 1–10. doi: 10.3760/cma.j.issn.0254-1424.2018.01.001

    Chinese Expert Consensus Group on the Evaluation and Treatment of Dysphagia Rehabilitation. Expert consensus on evaluation and treatment of dysphagia in China (2017 Edition)[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2018, 40(1): 1–10. doi: 10.3760/cma.j.issn.0254-1424.2018.01.001
    [6] SHIMAZAKI Y, SAITO M, NONOYAMA T, et al. Oral factors associated with swallowing function in independent elders[J]. Oral Health & Preventive Dentistry, 2020, 18(1): 683–691. doi: 10.3290/j.ohpd.a45071
    [7] PAVITHRAN J, PUTHIYOTTIL I V, KUMAR M, et al. Exploring the utility of fibreoptic endoscopic evaluation of swallowing in young children-a comparison with videofluoroscopy[J]. International Journal of Pediatric Otorhinolaryngology, 2020, 138: 110339. doi: 10.1016/j.ijporl.2020.110339
    [8] KU P K M, HOLSINGER F C, CHAN J Y K, et al. Management of dysphagia in the patient with head and neck cancer during COVID‐19 pandemic: practical strategy[J]. Head & Neck, 2020, 42(7): 1491–1496. doi: 10.1002/hed.26224
    [9] O'BRIEN M K, BOTONIS O K, LARKIN E, et al. Advanced machine learning tools to monitor biomarkers of dysphagia: A wearable sensor proof-of-concept study[J]. Digital Biomarkers, 2021, 5(2): 167–175. doi: 10.1159/000517144
    [10] KUROSU A, COYLE J L, DUDIK J M, et al. Detection of swallow kinematic events from acoustic high-resolution cervical auscultation signals in patients with stroke[J]. Archives of Physical Medicine and Rehabilitation, 2019, 100(3): 501–508. doi: 10.1016/j.apmr.2018.05.038
    [11] KHALIFA Y, COYLE J, and LSEJDIĆ E. Non-invasive identification of swallows via deep learning in high resolution cervical auscultation recordings[J]. Scientific Reports, 2020, 10(1): 8704. doi: 10.1038/s41598-020-65492-1
    [12] SCHULTHEISS C, SCHAUER T, NAHRSTAEDT H, et al. Automated detection and evaluation of swallowing using a combined EMG/bioimpedance measurement system[J]. The Scientific World Journal, 2014, 2014: 405471. doi: 10.1155/2014/405471
    [13] SUZUKI M, SASAKI M, KAMATA K, et al. Swallowing pattern classification method using multichannel surface EMG signals of suprahyoid and infrahyoid muscles[J]. Advanced Biomedical Engineering, 2020, 9: 10–20. doi: 10.14326/abe.9.10
    [14] DAMOURAS S, SEJDIC E, STEELE C M, et al. An online swallow detection algorithm based on the quadratic variation of dual-axis accelerometry[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3352–3359. doi: 10.1109/TSP.2010.2043972
    [15] FAROOQ M, FONTANA J M, and SAZONOV E. A novel approach for food intake detection using electroglottography[J]. Physiological Measurement, 2014, 35(5): 739–751. doi: 10.1088/0967-3334/35/5/739
    [16] KALANTARIAN H, ALSHURAFA N, and SARRAFZADEH M. A wearable nutrition monitoring system[C]. 2014 11th International Conference on Wearable and Implantable Body Sensor Networks, Zurich, Switzerland, 2014: 75–80.
    [17] MIRTCHOUK M, MERCK C, and KLEINBERG S. Automated estimation of food type and amount consumed from body-worn audio and motion sensors[C]. The 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 2016: 451–462.
    [18] BI Yin, LV Mingsong, SONG Chen, et al. AutoDietary: A wearable acoustic sensor system for food intake recognition in daily life[J]. IEEE Sensors Journal, 2016, 16(3): 806–816. doi: 10.1109/JSEN.2015.2469095
    [19] INOUE K, YOSHIOKA M, YAGI N, et al. Using machine learning and a combination of respiratory flow, laryngeal motion, and swallowing sounds to classify safe and unsafe swallowing[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(11): 2529–2541. doi: 10.1109/TBME.2018.2807487
    [20] KUSUHARA T, NAKAMURA T, SHIRAKAWA Y, et al. Impedance pharyngography to assess swallowing function[J]. Journal of International Medical Research, 2004, 32(6): 608–616. doi: 10.1177/147323000403200605
    [21] ZHANG Fu, MCILDUFF C, GUTIERREZ H, et al. Bioimpedance Measurement to Evaluate Swallowing in a Patient with Amyotrophic Lateral Sclerosis[C]. International Conference on Electrical Bioimpedance, Joinville, Brazil, 2019: 107–112.
    [22] RENGARAJAN A and GYAWALI C P. Functional anatomy and physiology of swallowing and esophageal motility[M]. RICHTER J E, CASTELL D O, KATZKA D A, et al. The Esophagus. 6th ed. Chichester: John Wiley & Sons Ltd. , 2021: 59–96.
    [23] ALIX J J P, MCDONOUGH H E, SONBAS B, et al. Multi-dimensional electrical impedance myography of the tongue as a potential biomarker for amyotrophic lateral sclerosis[J]. Clinical Neurophysiology, 2020, 131(4): 799–808. doi: 10.1016/j.clinph.2019.12.418
    [24] SANCHEZ B, IYER S R, LI Jia, et al. Non‐invasive assessment of muscle injury in healthy and dystrophic animals with electrical impedance myography[J]. Muscle & Nerve, 2017, 56(6): E85–E94. doi: 10.1002/mus.25559
    [25] 李刚, 周梅, 何峰, 等. 基于数字锁相相关计算结构的优化算法[J]. 电子与信息学报, 2012, 34(3): 744–748. doi: 10.3724/SP.J.1146.2011.00333

    LI Gang, ZHOU Mei, HE Feng, et al. An optimization algorithm based on computation structure of correlation in digital lock-in detection[J]. Journal of Electronics &Information Technology, 2012, 34(3): 744–748. doi: 10.3724/SP.J.1146.2011.00333
    [26] CHEN Xinda, WEI Minxiang, CHEN Kai, et al. Research on weak signal detection of integral average digital lock-in amplifier[J]. Measurement Science and Technology, 2021, 32(10): 105905. doi: 10.1088/1361-6501/ac0d74
    [27] GRIMNES S and MARTINSEN Ø G. Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors[J]. Journal of Physics D:Applied Physics, 2006, 40(1): 9–14. doi: 10.1088/0022-3727/40/1/S02
    [28] 杨淑莹, 桂彬彬, 陈胜勇. 基于小波分解和1D-GoogLeNet的心律失常检测[J]. 电子与信息学报, 2021, 43(10): 3018–3027. doi: 10.11999/JEIT200774

    YANG Shuying, GUI Binbin, and CHEN Shengyong. Arrhythmia detection based on wavelet decomposition and 1D-GoogLeNet[J]. Journal of Electronics &Information Technology, 2021, 43(10): 3018–3027. doi: 10.11999/JEIT200774
    [29] ALSHURAFA N, KALANTARIAN H, POURHOMAYOUN M, et al. Recognition of nutrition intake using time-frequency decomposition in a wearable necklace using a piezoelectric sensor[J]. IEEE Sensors Journal, 2015, 15(7): 3909–3916. doi: 10.1109/JSEN.2015.2402652
    [30] SAZONOV E S, MAKEYEV O, SCHUCKERS S, et al. Automatic detection of swallowing events by acoustical means for applications of monitoring of ingestive behavior[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(3): 626–633. doi: 10.1109/TBME.2009.2033037
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  412
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 修回日期:  2022-02-17
  • 录用日期:  2022-07-26
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回