高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射频集成电路校准技术综述

李松亭 颜盾

李松亭, 颜盾. 射频集成电路校准技术综述[J]. 电子与信息学报, 2022, 44(11): 4058-4074. doi: 10.11999/JEIT210886
引用本文: 李松亭, 颜盾. 射频集成电路校准技术综述[J]. 电子与信息学报, 2022, 44(11): 4058-4074. doi: 10.11999/JEIT210886
LI Songting, YAN Dun. An Overview on Calibration Techniques for Radio Frequency Integrated Circuits[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4058-4074. doi: 10.11999/JEIT210886
Citation: LI Songting, YAN Dun. An Overview on Calibration Techniques for Radio Frequency Integrated Circuits[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4058-4074. doi: 10.11999/JEIT210886

射频集成电路校准技术综述

doi: 10.11999/JEIT210886
基金项目: 国家自然科学基金(61804182),湖南省自然科学基金(2019JJ50741)
详细信息
    作者简介:

    李松亭:男,副研究员,研究方向为模拟、射频及混合信号集成电路设计

    颜盾:男,博士,研究方向为模拟、射频及混合信号集成电路设计

    通讯作者:

    李松亭 songtingl@sina.com

  • 中图分类号: TN43

An Overview on Calibration Techniques for Radio Frequency Integrated Circuits

Funds: The National Natural Science Foundation of China(61804182), The Natural Science Foundation of Hunan Province(2019JJ50741)
  • 摘要: 射频集成电路(RFICs)对工艺偏差、器件失配、器件非线性等引入的静态非理想因素以及温度变化、增益改变、输入/输出频率变动等引入的动态非理想因素所表现出的鲁棒性较差。该文深入挖掘影响射频集成电路性能的关键因素,并对典型的校准算法进行归纳和总结,为高性能射频集成电路设计提供理论支撑。
  • 图  1  适用于零中频接收机的数字辅助DCOC

    图  2  基于LMS算法的自适应偶次非线性失真校准电路

    图  3  适用于低中频接收机的正交失配校准电路

    图  4  I/Q失配基带自适应LMS校准电路

    图  5  八相混频器本振信号频域等效图

    图  6  宽带滤波器带宽校准电路

    图  7  发射端载波泄露校准电路

    图  8  DPD学习结构

    图  9  AFC校准方法

    图  10  频率综合器稳定型校准示意图

    图  11  多通道幅相校准图

    表  1  本文校准技术总结

    降级原因降级现象产生原因校准技术出现场景
    射频
    收发
    链路
    直流偏移接收链路饱和自混频/外部强干扰/
    工艺偏差、温度变化
    直流偏移校准接收链路
    偶次非线性失真降低信号信噪比器件非线性、器件失配偶次非线性失真校准零中频接收链路
    I/Q失配星座图旋转工艺偏差、温度变化I/Q失配校准收发链路
    谐波干扰降低信号信噪比混频器开关效应的奇次谐波谐波抑制技术超宽带接收链路
    滤波器带宽偏移信号混叠效应或者抑制
    周期性频谱能力减弱
    工艺偏差、温度变化滤波器带宽偏移校准收发链路
    本振泄露星座图水平/垂直移动器件失配本振泄露校准发射链路
    PA非线性发射频谱增生器件非线性数字预失真发射链路
    频率综合器KVCO过大本振杂散增强、锁定时间长频率综合器固有属性自动频率校准频率综合器
    稳定性降级环路自激外部输入/输出频率变化稳定性校准
    多通道
    射频收发
    多通道
    幅相失配
    波束畸形成形器件失配导致多通道幅相失配多片同步校准技术相控阵等多通道
    应用场景
    下载: 导出CSV
  • [1] HUANG Minyu, CHI Taiyun, LI Sensen, et al. A 24.5–43.5-GHz ultra-compact CMOS receiver front end with calibration-free instantaneous full-band image rejection for multiband 5G massive MIMO[J]. IEEE Journal of Solid-State Circuits, 2020, 55(5): 1177–1186. doi: 10.1109/JSSC.2019.2959495
    [2] 贾海昆, 池保勇. 硅基毫米波雷达芯片研究现状与发展[J]. 电子与信息学报, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666

    JIA Haikun and CHI Baoyong. The status and trends of silicon-based millimeter-wave radar SoCs[J]. Journal of Electronics &Information Technology, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666
    [3] KUMAR T B, MA Kaixue, and YEO K S. A 4 GHz 60 dB variable gain amplifier with tunable DC offset cancellation in 65 nm CMOS[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(1): 37–39. doi: 10.1109/LMWC.2014.2361676
    [4] 李松亭. CMOS射频接收集成电路关键技术研究与设计实现[D]. [博士论文], 国防科学技术大学, 2015.

    LI Songting. Research of key techniques and implementation on CMOS rf receiving integrated circuits[D]. [Ph. D. dissertation], National University of Defense Technology, 2015.
    [5] SHIH H Y, KUO C N, CHEN W H, et al. A 250 MHz 14 dB-NF 73 dB-Gain 82 dB-DR analog baseband chain with digital-assisted DC-offset calibration for ultra-wideband[J]. IEEE Journal of Solid-State Circuits, 2010, 45(2): 338–350. doi: 10.1109/JSSC.2009.2036320
    [6] LI Songting, LI Jiancheng, GU Xiaochen, et al. A continuously and widely tunable 5 dB-NF 89.5 dB-Gain 85.5 dB-DR CMOS TV receiver with digitally-assisted calibration for multi-standard DBS applications[J]. IEEE Journal of Solid-State Circuits, 2013, 48(11): 2762–2774. doi: 10.1109/JSSC.2013.2281691
    [7] JIN Jing, LIU Xiaoming, YAN Taotao, et al. Fully configurable capacitor-less oversampling DC offset cancellation for direct conversion receivers[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2019, 66(10): 1683–1687. doi: 10.1109/TCSII.2019.2921895
    [8] RETZ G, SHANAN H, MULVANEY K, et al. A highly integrated low-power 2.4GHz transceiver using a direct-conversion diversity receiver in 0.18 μm CMOS for IEEE802.15. 4 WPAN[C]. IEEE International Solid-State Circuits Conference-Digest of Technical Papers, San Francisco, USA, 2009: 414–415.
    [9] BRANDOLINI M, ROSSI P, SANZOGNI D, et al. A +78 dBm IIP2 CMOS direct downconversion mixer for fully integrated UMTS receivers[J]. IEEE Journal of Solid-State Circuits, 2006, 41(3): 552–559. doi: 10.1109/JSSC.2005.864123
    [10] DUFRENE K, BOOS Z, and WEIGEL R. Digital adaptive IIP2 calibration scheme for CMOS downconversion mixers[J]. IEEE Journal of Solid-State Circuits, 2008, 43(11): 2434–2445. doi: 10.1109/JSSC.2008.2005453
    [11] JIANG Peichen, LU Zhijian, GUAN Rui, et al. All-digital adaptive module for automatic background IIP2 calibration in CMOS downconverters with fast convergence[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2013, 60(7): 427–431. doi: 10.1109/TCSII.2013.2261171
    [12] DANILOVIC D, MILOVANOVIC V, CATHELIN A, et al. Low-power inductorless RF receiver front-end with IIP2 calibration through body bias control in 28nm UTBB FDSOI[C]. IEEE Radio Frequency Integrated Circuits Symposium, San Francisco, USA, 2016: 87–90.
    [13] XIA Bing, QI Nan, FU Jian, et al. A blocker-tolerant ZigBee transceiver with on-chip balun and CR/IQ/IIP2 self-calibrations for home automation[J]. Analog Integrated Circuits and Signal Processing, 2016, 86(1): 11–23. doi: 10.1007/s10470-015-0636-6
    [14] KACZMAN D, SHAH M, ALAM M, et al. A single-chip 10-band WCDMA/HSDPA 4-band GSM/EDGE SAW-less CMOS receiver with DigRF 3G interface and +90 dBm IIP2[J]. IEEE Journal of Solid-State Circuits, 2009, 44(3): 718–739. doi: 10.1109/JSSC.2009.2013762
    [15] ELAHI I and MUHAMMAD K. IIP2 calibration by injecting DC offset at the mixer in a wireless receiver[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2007, 54(12): 1135–1139. doi: 10.1109/TCSII.2007.905376
    [16] VAHIDFAR M B and SHOAEI O. A high IIP2 mixer enhanced by a new calibration technique for zero-IF receivers[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2008, 55(3): 219–223. doi: 10.1109/TCSII.2008.918998
    [17] ZHANG Weifeng, HE Hongyin, and WANG Riyan. A 2.0 GHz IQ imbalance compensator with programmable switch biases in a passive mixer[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2018, 65(8): 989–993. doi: 10.1109/TCSII.2018.2799571
    [18] KO J, KIM J, CHO S, et al. A 19-mW 2.6-mm2 L1/L2 dual-band CMOS GPS receiver[J]. IEEE Journal of Solid-State Circuits, 2005, 40(7): 1414–1425. doi: 10.1109/JSSC.2005.847326
    [19] CHOO H, SESTOK C, ZHANG Xiaoxi, et al. Joint TX and feedback RX IQ mismatch compensation for integrated direct conversion transmitters[C]. IEEE Radio Frequency Integrated Circuits Symposium, Honolulu, USA, 2017: 53–56.
    [20] QI Nan, XU Yang, CHI Baoyong, et al. A dual-channel Compass/GPS/GLONASS/Galileo reconfigurable GNSS receiver in 65 nm CMOS with on-chip I/Q calibration[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2012, 59(8): 1720–1732. doi: 10.1109/TCSI.2012.2206502
    [21] LI Songting, LI Jiancheng, GU Xiaochen, et al. Reconfigurable all-band RF CMOS transceiver for GPS/GLONASS/Galileo/Beidou with digitally assisted calibration[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(9): 1814–1827. doi: 10.1109/TVLSI.2014.2348593
    [22] ZHANG Cheng, WANG Lifang, TAN Xi, et al. Adaptive IF selection and IQ mismatch compensation in a low-IF GSM receiver[J]. Journal of Semiconductors, 2012, 33(6): 065005. doi: 10.1088/1674-4926/33/6/065005
    [23] YE Hui, LI Bin, HUANG Mo, et al. A digital IQ imbalance self-calibration in FDD transceiver[C]. International Symposium on VLSI Design, Automation and Test, Hsinchu, China, 2017: 1–4.
    [24] KHANDELWAL A and VERMA A. A Novel gain, phase and offset calibration scheme for wideband direct-conversion transmitters[C]. IEEE 81st Vehicular Technology Conference, Glasgow, UK, 2015: 1–5.
    [25] LI Chunshu, LI Min, POLLIN S, et al. Reduced complexity on-chip IQ-imbalance self-calibration[C]. IEEE Workshop on Signal Processing Systems, Quebec City, Canada, 2012: 31–36.
    [26] KAWAI S, YAMAGISHI T, HAGIWARA Y, et al. A 1024-QAM capable WLAN receiver with –56.3 dB image rejection ratio using self-calibration technique[C]. IEEE International Symposium on Circuits and Systems, Baltimore, USA, 2017: 1–4.
    [27] PANG Jian, MAKI S, KAWAI S, et al. A 50.1-Gb/s 60-GHz CMOS transceiver for IEEE 802.11ay with calibration of LO feedthrough and I/Q imbalance[J]. IEEE Journal of Solid-State Circuits, 2019, 54(5): 1375–1390. doi: 10.1109/JSSC.2018.2886338
    [28] 陈雷, 岳光荣, 唐俊林, 等. 基于数字预失真的发射机I/Q不平衡矫正[J]. 电子与信息学报, 2017, 39(4): 847–853. doi: 10.11999/JEIT160581

    CHEN Lei, YUE Guangrong, TANG Junlin, et al. Calibration of transmitter I/Q imbalance based on digital Pre-distortion[J]. Journal of Electronics &Information Technology, 2017, 39(4): 847–853. doi: 10.11999/JEIT160581
    [29] KAWAI S, ITO R, NAKATA K, et al. An 802.11ax 4×4 high-efficiency WLAN AP transceiver SoC supporting 1024-QAM with frequency-dependent IQ calibration and integrated interference analyzer[J]. IEEE Journal of Solid-State Circuits, 2018, 53(12): 3688–3699. doi: 10.1109/JSSC.2018.2877168
    [30] BAZRAFSHAN A, TAHERZADEH-SANI M, and NABKI F. A 0.8-4 GHz software-defined radio receiver with improved harmonic rejection through non-overlapped clocking[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2018, 65(10): 3186–3195. doi: 10.1109/TCSI.2018.2815720
    [31] WU Liang, NG A W L, ZHENG Shiyuan, et al. A 0.9-5.8 GHz software-defined receiver RF front-end with transformer-based current-gain boosting and harmonic rejection calibration[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(8): 2371–2382. doi: 10.1109/TVLSI.2017.2695719
    [32] CHA H K, KWON K, CHOI J, et al. A CMOS wideband RF front-end with mismatch calibrated harmonic rejection mixer for terrestrial digital TV tuner applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(8): 2143–2151. doi: 10.1109/TMTT.2010.2053072
    [33] DE BOER P T, ALINK M S O, and KLUMPERINK E A M. Simplified harmonic rejection mixer analysis and design based on a filtered periodic impulse model[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(7): 2292–2296. doi: 10.1109/TCSII.2021.3051769
    [34] SHEHATA M A, ROY V, BRESLIN J, et al. A 32-42-GHz RTWO-based frequency quadrupler achieving >37 dBc harmonic rejection in 22-nm FD-SOI[J]. IEEE Solid-State Circuits Letters, 2021, 4: 72–75. doi: 10.1109/LSSC.2021.3055628
    [35] EL-AASSAR O, KIBAROGLU K, and REBEIZ G M. A 16 path all-passive harmonic rejection mixer with watt-level in-band IIP3 in 45-nm CMOS SOI[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(8): 790–793. doi: 10.1109/LMWC.2020.3004546
    [36] GEBHARD A, SADJINA S, TERTINEK S, et al. A harmonic rejection strategy for 25% duty-cycle IQ-mixers using digital-to-time converters[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(7): 1229–1233. doi: 10.1109/TCSII.2019.2937654
    [37] KANG H, HO W G, SINGH V K, et al. A wideband receiver employing PWM-based harmonic rejection downconversion[J]. IEEE Journal of Solid-State Circuits, 2018, 53(5): 1398–1410. doi: 10.1109/JSSC.2017.2784764
    [38] HAQ F U, ENGLUND M, ANTONOV Y, et al. A blocker-tolerant two-stage harmonic-rejection RF front-end[C]. IEEE Radio Frequency Integrated Circuits Symposium, Boston, USA, 2019: 203–206.
    [39] FORBES T, HO W G, and GHARPURE R. Design and analysis of harmonic rejection mixers with programmable LO frequency[J]. IEEE Journal of Solid-State Circuits, 2013, 48(10): 2363–2374. doi: 10.1109/JSSC.2013.2275652
    [40] WU Hao, MURPHY D, and DARABI H. A harmonic-selective multi-band wireless receiver with digital harmonic rejection calibration[J]. IEEE Journal of Solid-State Circuits, 2019, 54(3): 796–807. doi: 10.1109/JSSC.2018.2885546
    [41] KIM S, JEONG M, KIM Y, et al. A complex band-pass filter for low-IF conversion DAB/T-DMB tuner with I/Q mismatch calibration[C]. IEEE Asian Solid-State Circuits Conference, Fukuoka, Japan, 2008: 473–476.
    [42] LE VU H, LUU H T T, TRAN L D, et al. Implementation of CMOS tunable on-chip Gm-C IF filter in RF front-end IC for SDR transceiver[C]. 7th International Conference on Integrated Circuit, Design, and Verification, Hanoi, Vietnam, 2017: 46–51.
    [43] HUANG Mo, CHEN Dihu, GUO Jianping, et al. A CMOS delta-sigma PLL transmitter with efficient modulation bandwidth calibration[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2015, 62(7): 1716–1725. doi: 10.1109/TCSI.2015.2441965
    [44] LIANG Zhen, LI Bin, HUANG Mo, et al. A four-band TD-LTE transmitter with wide dynamic range and LPF bandwidth calibration[C]. International Symposium on VLSI Design, Automation and Test, Hsinchu, China, 2017: 1–4.
    [45] CHEN Fangxiong, LIN Min, CHEN Bei, et al. Design of an active-RC low-pass filter with accurate tuning architecture[J]. Journal of Semiconductors, 2008, 29(11): 2238–2244.
    [46] LI Songting, CHEN Lihu, and ZHAO Yong. Reconfigurable active-RC LPF with self-adaptive bandwidth calibration for software-defined radio in 130 nm CMOS[C]. 14th IEEE International Conference on Solid-State and Integrated Circuit Technology, Qingdao, China, 2018: 1–3.
    [47] 吴建辉, 周明杰, 陈超, 等. 一种用于Gm-C滤波器的主从结构频率校准电路[P]. 中国专利, 103905037A, 2014.

    WU Jianhui, ZHOU Mingjie, CHEN Chao, et al. Principal and subordinate structure frequency calibration circuit used for Gm-C filter[P]. China Patent. 103905037A, 2014.
    [48] 李巍, 高亭, 陈云峰, 等. 一种用于Gm-C滤波器的频率自调谐电路[P]. 中国专利, 101867354B, 2014.

    LI Wei, GAO Ting, CHEN Yunfeng, et al. Frequency self-tuning circuit used for Gm-C filter[P]. China Patent. 101867354B, 2014.
    [49] ADI. AD9361 user guide[EB/OL]. https://www.analog.com/cn/products/ad9361.html, 2021.
    [50] WU C, WANG Yanjie, NIKOLI B, et al. An interference-resilient wideband mixer-first receiver with LO leakage suppression and I/Q correlated orthogonal calibration[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(4): 1088–1101. doi: 10.1109/TMTT.2016.2532867
    [51] SHIH H Y and WANG C W. A highly-integrated 3-8 GHz Ultra-wideband RF transmitter with digital-assisted carrier leakage calibration and automatic transmit power control[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2012, 20(8): 1357–1367. doi: 10.1109/TVLSI.2011.2157842
    [52] PANG Jian, MAKI S, KAWAI S, et al. 24.9 A 128-QAM 60GHz CMOS transceiver for IEEE802.11ay with calibration of LO feedthrough and I/Q imbalance[C]. IEEE International Solid-State Circuits Conference, San Francisco, USA, 2017: 424–425.
    [53] 张飞飞, 彭程, 荣兴帅, 等. 基于射频收发芯片的发射本振泄露数字校准系统及方法[P]. 中国专利, 111181594A, 2020.

    ZAHNG Feifei, PENG Cheng, RONG Xingshuai, et al. Transmitting local oscillator leakage digital calibration system and method based on radio frequency transceiver chip[P]. China Patent. 111181594A, 2020.
    [54] 蓝翱华, 周瑞兴. 一种进行IQ信号实时校准的方法和装置[P]. 中国专利, 102223330A, 2011.

    LAN Aohua and ZHOU Ruixing. Method and device for IQ (intelligence quotient) signal real-time calibration[P]. China Patent. 102223330A, 2011.
    [55] SETH S, KWON D H, VENUGOPALAN S, et al. A dynamically biased multiband 2G/3G/4G cellular transmitter in 28 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2016, 51(5): 1096–1108. doi: 10.1109/JSSC.2015.2510023
    [56] O'SULLIVAN C, NERAD J, BURYANEC J, et al. Carrier leak calibration scheme on a 0.18µm transmitter[C]. IET Irish Signals and Systems Conference, Cork, Ireland, 2010: 141–146.
    [57] PRAVEEN M V and KRISHNAPURA N. An automatic LO leakage calibration method for class-AB power mixer based RF transmitters[C]. IEEE Symposium on Circuits and Systems, Florence, Italy, 2018: 1–5.
    [58] 曹韬, 刘友江, 杨春, 等. 高效宽带包络跟踪系统电路性能优化及非线性行为校正[J]. 电子与信息学报, 2020, 42(3): 787–794. doi: 10.11999/JEIT190275

    CAO Tao, LIU Youjiang, YANG Chun, et al. Circuits optimization and system linearization for high efficiency and wideband envelope tracking architecture[J]. Journal of Electronics &Information Technology, 2020, 42(3): 787–794. doi: 10.11999/JEIT190275
    [59] YOO S W, HUNG S C, and YOO S M. A Watt-level quadrature class-G switched-capacitor power amplifier with linearization techniques[J]. IEEE Journal of Solid-State Circuits, 2019, 54(5): 1274–1287. doi: 10.1109/JSSC.2019.2904209
    [60] CHO K and GHARPUREY R. An efficient class-G stage for switching RF power amplifier applications[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2019, 66(4): 597–601. doi: 10.1109/TCSII.2018.2870277
    [61] BANERJEE A, DING Lei, and HEZAR R. A high efficiency multi-mode outphasing RF power amplifier with 31.6 dBm peak output power in 45nm CMOS[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(3): 815–828. doi: 10.1109/TCSI.2019.2954068
    [62] JUNG D, LI Sensen, PARK J S, et al. A CMOS 1.2-V hybrid current- and voltage-mode three-way digital Doherty PA with built-in phase nonlinearity compensation[J]. IEEE Journal of Solid-State Circuits, 2020, 55(3): 525–535. doi: 10.1109/JSSC.2019.2953832
    [63] HUNG S C, YOO S W, and YOO S M. A quadrature class-G complex-domain Doherty digital power amplifier[J]. IEEE Journal of Solid-State Circuits, 2021, 56(7): 2029–2039. doi: 10.1109/JSSC.2020.3040973
    [64] OTA T, KAWASAKI T, KIMURA S, et al. A novel multi-band look-up table based digital predistorter with a single common feedback loop[C]. Proceedings of 2018 Asia-Pacific Microwave Conference, Kyoto, Japan, 2018: 551–553.
    [65] REN Jijun. Digital predistorter for short-wave power amplifier with improving index accuracy of lookup table based on FPGA[J]. IEEE Access, 2019, 7: 182881–182885. doi: 10.1109/ACCESS.2019.2960092
    [66] WANG Siqi, ROGER M, SARRAZIN J, et al. An efficient method to study the tradeoff between power amplifier efficiency and digital predistortion complexity[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(11): 741–744. doi: 10.1109/LMWC.2019.2939911
    [67] CAMPO P P, LAMPU V, ANTTILA L, et al. Closed-loop sign algorithms for low-complexity digital predistortion: Methods and performance[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 1048–1062. doi: 10.1109/TMTT.2020.3038316
    [68] SALEH A A M. Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers[J]. IEEE Transactions on Communications, 1981, 29(11): 1715–1720. doi: 10.1109/TCOM.1981.1094911
    [69] MANSELL A R and BATEMAN A. Adaptive predistortion with reduced feedback complexity[J]. Electronics Letters, 1996, 32(13): 1153–1154. doi: 10.1049/el:19960785
    [70] WHITE G P, BURR A G, and JAVORNIK T. Modelling of nonlinear distortion in broadband fixed wireless access systems[J]. Electronics Letters, 2003, 39(8): 686–687. doi: 10.1049/el:20030462
    [71] CAVERS J K. The effect of quadrature modulator and demodulator errors on adaptive digital predistorters for amplifier linearization[J]. IEEE Transactions on Vehicular Technology, 1997, 46(2): 456–466. doi: 10.1109/25.580784
    [72] EUN C and POWERS E J. A new Volterra predistorter based on the indirect learning architecture[J]. IEEE Transactions on Signal Processing, 1997, 45(1): 223–227. doi: 10.1109/78.552219
    [73] ISAKSSON M, WISELL D, and RONNOW D. A comparative analysis of behavioral models for RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(1): 348–359. doi: 10.1109/TMTT.2005.860500
    [74] VUONG X T and GUIBORD A F. Modelling of nonlinear elements exhibiting frequency-dependent AM/AM and AM/PM transfer characteristics[J]. Canadian Electrical Engineering Journal, 1984, 9(3): 112–116. doi: 10.1109/CEEJ.1984.6593795
    [75] DING Lei, ZHOU G T, MORGAN D R, et al. A robust digital baseband predistorter constructed using memory polynomials[J]. IEEE Transactions on Communications, 2004, 52(1): 159–165. doi: 10.1109/TCOMM.2003.822188
    [76] KU H, MCKINLEY M D, and KENNEY J S. Quantifying memory effects in RF power amplifier[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(12): 2843–2849. doi: 10.1109/TMTT.2002.805196
    [77] ISAKSSON M, WISELL D, and RONNOW D. Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(11): 3422–3428. doi: 10.1109/TMTT.2005.855742
    [78] DING Lei, MUJICA F, and YANG Zigang. Digital predistortion using direct learning with reduced bandwidth feedback[C]. IEEE MTT-S International Microwave Symposium Digest, Seattle, USA, 2013: 1–3.
    [79] ZHANG Qian, CHEN Wenhua, and FENG Zhenghe. Reduced cost digital predistortion only with in-phase feedback signal[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(3): 257–259. doi: 10.1109/LMWC.2018.2797541
    [80] 兰榕, 胡欣, 邹峰, 等. 基于循环平稳特性的欠采样宽带数字预失真研究[J]. 电子与信息学报, 2020, 42(5): 1274–1280. doi: 10.11999/JEIT190105

    LAN Rong, HU Xin, ZOU Feng, et al. Research of low sampling frequency broadband digital predistortion with cyclostationary characteristics[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1274–1280. doi: 10.11999/JEIT190105
    [81] NG E, BELTAGY Y, SCARLATO G, et al. Digital predistortion of millimeter-wave RF beamforming arrays using low number of steering angle-dependent coefficient sets[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(11): 4479–4492. doi: 10.1109/TMTT.2019.2924893
    [82] TERVO N, KHAN B, KURSU O, et al. Digital predistortion of phased-array transmitter with shared feedback and far-field calibration[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 1000–1015. doi: 10.1109/TMTT.2020.3038193
    [83] PHAM Q A, LÓPEZ-BUENO D, WANG Teng, et al. Partial least squares identification of multi look-up table digital predistorters for concurrent dual-band envelope tracking power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(12): 5143–5150. doi: 10.1109/TMTT.2018.2857819
    [84] HUANG Hai, XIA Jingjing, and BOUMAIZA S. Novel parallel-processing-based hardware implementation of baseband digital predistorters for linearizing wideband 5G transmitters[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(9): 4066–4076. doi: 10.1109/TMTT.2020.2993236
    [85] SURYASARMAN P, LIU Peng, and SPRINGER A. Optimizing the identification of digital predistorters for improved power amplifier linearization performance[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2014, 61(9): 671–675. doi: 10.1109/TCSII.2014.2331095
    [86] HU Xin, LIU Ting, LIU Zhijun, et al. A novel single feedback architecture with time-interleaved sampling for multi-band DPD[J]. IEEE Communications Letters, 2019, 23(6): 1033–1036. doi: 10.1109/LCOMM.2019.2910812
    [87] ZHOU Dayong and DEBRUNNER V. A novel adaptive nonlinear predistorter based on the direct learning algorithm[C]. IEEE International Conference on Communications, Paris, France, 2004: 2362–2366.
    [88] NAGATA Y. Linear amplification technique for digital mobile communications[C]. Vehicular Technology Conference, San Francisco, USA, 1989: 159–164.
    [89] 吴溪. 基于自主标准的UHF RFID读写器的设计与实现[D]. [硕士论文], 国防科学技术大学, 2014.

    WU Xi. Design and realization of the UHF RFID reader based on independent standard[D]. [Master dissertation], National University of Defense Technology, 2014.
    [90] CAVERS J K. Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements[J]. IEEE Transactions on Vehicular Technology, 1990, 39(4): 374–382. doi: 10.1109/25.61359
    [91] FAULKNER M and JOHANSSON M. Adaptive linearization using predistortion-experimental results[J]. IEEE Transactions on Vehicular Technology, 1994, 43(2): 323–332. doi: 10.1109/25.293651
    [92] SHIN J and SHIN H. A fast and high-precision VCO frequency calibration technique for wideband ΔΣ fractional-N frequency synthesizers[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2010, 57(7): 1573–1582. doi: 10.1109/TCSI.2009.2036057
    [93] LEE D S, JANG J H, PARK H G, et al. A wide-locking-range dual injection-locked frequency divider with an automatic frequency calibration loop in 65-nm CMOS[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2015, 62(4): 327–331. doi: 10.1109/TCSII.2014.2387591
    [94] ZHOU Jin, LI Wei, HUANG Deping, et al. A 0.4-0.6-GHz frequency synthesizer using dual-mode VCO for software-defined radio[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(2): 848–859. doi: 10.1109/TMTT.2012.2233493
    [95] SHIN J and SHIN H. A 1.9-3.8 GHz ΔΣ fractional-N PLL frequency synthesizer with fast auto-calibration of loop bandwidth and VCO frequency[J]. IEEE Journal of Solid-State Circuits, 2012, 47(3): 665–675. doi: 10.1109/JSSC.2011.2179733
    [96] HU Ang, LIU Dongsheng, ZHANG Kefeng, et al. A 0.045- to 2.5-GHz frequency synthesizer with TDC-based AFC and phase switching multi-modulus divider[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(12): 4470–4483. doi: 10.1109/TCSI.2020.2997598
    [97] DING Xin, WU Jianhui, and CHEN Chao. An agile automatic frequency calibration technique for PLL[C]. IEEE International Conference on Integrated Circuits, Technologies and Applications, Beijing, China, 2018: 32–33.
    [98] RYU H, SUNG E T, PARK S, et al. Fast automatic frequency calibrator using an adaptive frequency search algorithm[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(4): 1490–1496. doi: 10.1109/TVLSI.2016.2627578
    [99] MOON Y J, ROH Y S, JEONG C Y, et al. A 4.39-5.26 GHz LC-tank CMOS voltage-controlled oscillator with small VCO-gain variation[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(8): 524–526. doi: 10.1109/LMWC.2009.2024846
    [100] LIU Xiaolong, ZHANG Lei, ZHANG Li, et al. A 3.01-3.82 GHz CMOS LC voltage-controlled oscillator with 6.29% VCO-gain variation for WLAN applications[J]. Journal of Semiconductors, 2014, 35(7): 075002. doi: 10.1088/1674-4926/35/7/075002
    [101] LU Lei, CHEN Jinghong, YUAN Lu, et al. An 18-mW 1.175-2-GHz frequency synthesizer with constant bandwidth for DVB-T tuners[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(4): 928–937. doi: 10.1109/TMTT.2009.2014449
    [102] WU Ting, HANUMOLU P K, MAYARAM K, et al. Method for a constant loop bandwidth in LC-VCO PLL frequency synthesizers[J]. IEEE Journal of Solid-State Circuits, 2009, 44(2): 427–435. doi: 10.1109/JSSC.2008.2010792
    [103] 李国儒, 孙庭波. 针对射频收发芯片的同步系统及方法[P]. 中国专利, 111245472A, 2020.

    LI Guoru and SUN Tingbo. Radio frequency transceiver chip, and synchronization system and method for radio frequency transceiver chip[P]. China Patent. 111245472A, 2020.
    [104] YU Sunquan, CHEN Lihu, LI Songting, et al. Adaptive multi-beamforming for space-based ADS-B[J]. The Journal of Navigation, 2019, 72(2): 359–374. doi: 10.1017/S0373463318000735
    [105] YU Sunquan, CHEN Lihu, FAN Chengguang, et al. Integrated antenna and receiver system with self-calibrating digital beamforming for space-based ADS-B[J]. Acta Astronautica, 2020, 170: 480–486. doi: 10.1016/j.actaastro.2020.02.001
    [106] WANG Yun, WU Rui, PANG Jian, et al. A 39-GHz 64-element phased-array transceiver with built-in phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2020, 55(5): 1249–1269. doi: 10.1109/JSSC.2020.2980509
    [107] SONG Zheng, LIU Xiliang, ZHAO Xiaokun, et al. A low-power NB-IoT transceiver with digital-polar transmitter in 180-nm CMOS[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2017, 64(9): 2569–2581. doi: 10.1109/TCSI.2017.2707412
    [108] 廖怀林. 硅基射频集成电路和系统[M]. 北京: 科学出版社, 2020: 167–173.
    [109] BEN-BASSAT A, GROSS S, LANE A, et al. A 10.5 fully integrated 27 dBm dual-band all-digital polar transmitter supporting 160 MHz for WiFi 6 applications[C]. IEEE International Solid-State Circuits Conference, San Francisco, USA, 2020: 180–182.
    [110] GHAHREMANI A, ANNEMA A J, and NAUTA B. A +20 dBm highly efficient linear outphasing class-E PA without AM/AM and AM/PM characterization requirements[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2019, 66(7): 1149–1153. doi: 10.1109/TCSII.2018.2877708
    [111] 廖怀林, 杨帆, 王润华, 等. 一种高线性度的数控相位插值器[P]. 中国专利, 106027037A, 2016.

    LIAO Huailin, YANG Fan, WANG Runhua, et al. High-linearity digitally phase interpolator[P]. China Patent. 106027037A, 2016.
    [112] STASZEWSKI R B, LEIPOLD D, MUHAMMAD K, et al. Digitally controlled oscillator (DCO)-based architecture for RF frequency synthesis in a deep-submicrometer CMOS process[J]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing, 2003, 50(11): 815–828. doi: 10.1109/TCSII.2003.819128
    [113] 俞思辰. 无线射频领域中宽带全数字频率综合器的研究与设计[D]. [博士论文], 复旦大学, 2014.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  3296
  • HTML全文浏览量:  2104
  • PDF下载量:  497
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-27
  • 修回日期:  2021-10-28
  • 网络出版日期:  2021-11-04
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回