高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期准互补序列集构造法

陈晓玉 彭秀英 王成瑞 崔莉

陈晓玉, 彭秀英, 王成瑞, 崔莉. 周期准互补序列集构造法[J]. 电子与信息学报, 2022, 44(11): 4034-4040. doi: 10.11999/JEIT210881
引用本文: 陈晓玉, 彭秀英, 王成瑞, 崔莉. 周期准互补序列集构造法[J]. 电子与信息学报, 2022, 44(11): 4034-4040. doi: 10.11999/JEIT210881
CHEN Xiaoyu, PENG Xiuying, WANG Chengrui, CUI Li. Constructions of Periodic Quasi-complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4034-4040. doi: 10.11999/JEIT210881
Citation: CHEN Xiaoyu, PENG Xiuying, WANG Chengrui, CUI Li. Constructions of Periodic Quasi-complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4034-4040. doi: 10.11999/JEIT210881

周期准互补序列集构造法

doi: 10.11999/JEIT210881
基金项目: 河北省自然科学基金(F2021203078),河北省高等学校科学技术研究项目(ZD2022026)
详细信息
    作者简介:

    陈晓玉:女,副教授,研究方向为信号设计、无线通信技术

    彭秀英:女,硕士生,研究方向为扩频序列设计

    王成瑞:男,硕士生,研究方向为扩频序列设计

    崔莉:女,博士生,研究方向编码理论、密码学、信号设计

    通讯作者:

    陈晓玉 chenxiaoyu@ysu.edu.cn

  • 中图分类号: TN911.2

Constructions of Periodic Quasi-complementary Sequence Sets

Funds: The Natural Science Foundation of Hebei Province (F2021203078), The Science and Technology Project of Hebei Education Department (ZD2022026)
  • 摘要: 该文基于2元序列支撑集和低相关序列集,提出一种新的周期准互补序列集构造框架。在此框架基础上,分别利用最优4元序列族A、族D和Luke序列集提出了3类渐近最优和渐近几乎最优周期准互补序列集,序列集参数由2元序列和低相关序列集共同决定。与传统的完备互补序列集相比,所构造的准互补序列集具有更多的序列数目,应用到多载波扩频通信系统中可以支持更多的用户。
  • 表  1  方法1周期准互补序列集参数

    $n$$M$$K$$N$${\delta _{\max }}$$\rho $
    664166354.01.9486
    712832127104.51.8851
    825664255204.01.8403
    9512128511400.91.8086
    1010242561023792.01.7862
    下载: 导出CSV

    表  2  方法2周期准互补序列集参数

    $n$$M$$K$$N$${\delta _{\max }}$$\rho $
    712832254152.71.9562
    825664510295.51.8888
    95121281.22577.01.8421
    10102425620461134.01.8095
    11204851240942240.01.7866
    下载: 导出CSV

    表  3  方法3周期准互补序列集参数

    $n$$M$$K$$N$${\delta _{\max }}$$\rho $
    28486.01.4882
    326132616.11.2374
    480408045.01.1249
    5242121242129.31.0685
    6728364728378.01.0385
    下载: 导出CSV

    表  4  准互补序列集参数比

    方法序列数目子序列数目序列长度$\delta_{\max} $$\rho $约束条件
    文献[11]方法1pnpn–1–1pn–1$\dfrac{1}{2}\left( p^{\frac{n}{2}+p^n}\right)$1$p=2 $
    文献[11]方法2pnpn–1–12(pn–1)$ p^{\frac{n}{2}}+ p^n$$ \sqrt {\frac{3}{2}}$$p=2 $
    文献[12]方法1p$\dfrac{p-1}{2}$p$\dfrac{p+\sqrt {p} }{2}$1p是奇素数且p≥5
    文献[12]方法2pKp$\sqrt {\dfrac{pK(p-K)}{p-1} }$1p是奇素数且p≥5
    文献[13]方法Apn–1Kpn–1$\sqrt {\dfrac{p^n K(p^n-K-1)}{p^n-2} }$1p是素数
    文献[13]方法Bpn–1$\dfrac{p^n}{4}$pn–13·2n–2$\sqrt {3} $p=2
    文献[13]方法Cpn–1$\dfrac{p^n-1}{2}$pn–1$\dfrac{1}{2}(p^n+p^{\frac{n}{2} })$1p是奇素数
    文献[13]方法Dpn–1pn–1pn–1$p^{n-\frac{1}{2}} $1p是素数
    文献[13]方法Ep2n–1pnp2n–1$p^{\frac{3n}{2}} $1p是素数
    本文方法1pnpn–2pn–1$3(p^{\frac{n}{2}-2}+p^{n-2}) $$\sqrt {3} $p=2
    本文方法2pnpn–22(pn–1)$3(p^{\frac{n}{2}-1}+p^{n-\frac{3}{2}}) $$\sqrt {3} $p=2
    本文方法3pn–1$\dfrac{p^n-1}{2}$pn–1$\dfrac{1}{2}(p^n+p^{\frac{n}{2} })$1p是奇素数
    下载: 导出CSV
  • [1] RATHINAKUMAR A and CHATURVEDI A K. Complete mutually orthogonal Golay complementary sets from reed-Muller codes[J]. IEEE Transactions on Information Theory, 2008, 54(3): 1339–1346. doi: 10.1109/TIT.2007.915980
    [2] SUEHIRO N and HATORI M. N-shift cross-orthogonal sequences[J]. IEEE Transactions on Information Theory, 1988, 34(1): 143–146. doi: 10.1109/18.2615
    [3] SUEHIRO N. A signal design without co-channel interference for approximately synchronized CDMA systems[J]. IEEE Journal on Selected Areas in Communications, 1994, 12(5): 837–841. doi: 10.1109/49.298057
    [4] CHEN H H, YEH J F, and SUEHIRO N. A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications[J]. IEEE Communications Magazine, 2001, 39(10): 126–135. doi: 10.1109/35.956124
    [5] LIU Zilong, GUAN Yongliang, and CHEN H H. Fractional-delay-resilient receiver design for interference-free MC-CDMA communications based on complete complementary codes[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1226–1236. doi: 10.1109/TWC.2014.2365467
    [6] LIU Zilong, PARAMPALLI U, and GUAN Yongliang. Optimal odd-length binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5768–5781. doi: 10.1109/TIT.2014.2335731
    [7] KE Pinhui and LIU Zhengchun. A generic construction of Z-periodic complementary sequence sets with flexible flock size and zero correlation zone length[J]. IEEE Signal Processing Letters, 2015, 22(9): 1462–1466. doi: 10.1109/LSP.2014.2369512
    [8] 陈晓玉, 李冠敏, 孔德明, 等. 高斯整数零相关区序列集构造方法的研究[J]. 电子与信息学报, 2019, 41(6): 1420–1426. doi: 10.11999/JEIT180703

    CHEN Xiaoyu, LI Guanmin, KONG Deming, et al. Research on the constructions of gaussian integer zero correlation zone sequence set[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1420–1426. doi: 10.11999/JEIT180703
    [9] 陈晓玉, 苏荷茹, 高茜超. 一类最优的零相关区非周期互补序列集构造法[J]. 电子与信息学报, 2021, 43(2): 461–466. doi: 10.11999/JEIT190703

    CHEN Xiaoyu, SU Heru, and GAO Xichao. Construction of optimal zero correlation zone aperiodic complementary sequence sets[J]. Journal of Electronics &Information Technology, 2021, 43(2): 461–466. doi: 10.11999/JEIT190703
    [10] LIU Tao, XU Chengqian, and LI Yubo. Binary complementary sequence set with low correlation zone[J]. IEEE Signal Processing Letters, 2020, 27: 1550–1554. doi: 10.1109/LSP.2020.3018628
    [11] LIU Zilong, PARAMPALLI U, GUAN Yongliang, et al. Constructions of optimal and near-optimal quasi-complementary sequence sets from Singer difference sets[J]. IEEE Wireless Communications Letters, 2013, 2(5): 487–490. doi: 10.1109/WCL.2013.061213.130286
    [12] LI Yubo, LIU Tao, and XU Chengqian. Constructions of asymptotically optimal quasi-complementary sequence sets[J]. IEEE Communications Letters, 2018, 22(8): 1516–1519. doi: 10.1109/LCOMM.2018.2836432
    [13] LI Yubo, TIAN Liying, LIU Tao, et al. Constructions of quasi-complementary sequence sets associated with characters[J]. IEEE Transactions on Information Theory, 2019, 65(7): 4597–4608. doi: 10.1109/TIT.2018.2890153
    [14] LI Yubo, TIAN Liying, LIU Tao, et al. Two constructions of asymptotically optimal quasi-complementary sequence sets[J]. IEEE Transactions on Communications, 2019, 67(3): 1910–1924. doi: 10.1109/TCOMM.2018.2885811
    [15] FAN Pingzhi and DARNELL M. Sequence Design for Communications Applications[M]. Taunton, England: Research Studies Press, 1996.
  • 加载中
表(4)
计量
  • 文章访问数:  569
  • HTML全文浏览量:  492
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2022-05-09
  • 网络出版日期:  2022-05-21
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回