高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于强化学习的多自由度智能超声机器人系统

宁国琛 张欣然 廖洪恩

宋锡明, 李瑞华, 张玉峰, 饶伯良. 小横向尺寸的圆弧振子背射天线[J]. 电子与信息学报, 1987, 9(1): 82-84.
引用本文: 宁国琛, 张欣然, 廖洪恩. 基于强化学习的多自由度智能超声机器人系统[J]. 电子与信息学报, 2022, 44(1): 1-10. doi: 10.11999/JEIT210879
Song Ximing, Li Ruihua, Zhang Yufeng, Rao Bailiang. A SMALL HORIZONTAL SIZE BACKFIRE ANTENNA USING CIRCULAR DIPOLE[J]. Journal of Electronics & Information Technology, 1987, 9(1): 82-84.
Citation: NING Guochen, ZHANG Xinran, LIAO Hongen. Multi-degree-of-freedom Intelligent Ultrasound Robot System Based on Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2022, 44(1): 1-10. doi: 10.11999/JEIT210879

基于强化学习的多自由度智能超声机器人系统

doi: 10.11999/JEIT210879
基金项目: 国家自然科学基金(82027807, 81771940),北京市自然科学基金(7212202),中国博士后科学基金(2021M701928)
详细信息
    作者简介:

    宁国琛:男,1992年生,博士后,研究方向为智能医疗机器人

    张欣然:女,1991年生,硕士,工程师,研究方向为医学影像与智能手术导航

    廖洪恩:男,1974年生,博士,教授,研究方向为精准微创诊疗与三维医学影像

    通讯作者:

    廖洪恩 liao@tsinghua.edu.cn

  • 中图分类号: TP242; TH776

Multi-degree-of-freedom Intelligent Ultrasound Robot System Based on Reinforcement Learning

Funds: The National Natural Science Foundation of China (82027807, 81771940), Beijing Municipal Natural Science Foundation (7212202), China Postdoctoral Science Foundation (2021M701928)
  • 摘要: 超声机器人作为一种典型的医疗机器人,在辅助诊断与外科引导中可以有效提高超声成像效率并降低人工长时间操作导致的疲劳。为了提升超声机器人在复杂动态环境中的成像效率与稳定性,该文提出一种基于深度强化学习的超声机器人多自由度成像控制方法与系统。首先基于近端策略梯度优化的成像动作决策方法,实时生成超声探头空间动作和姿态运动决策,并实现动态环境中对目标成像动作的持续生成过程。进一步,研究根据超声机器人成像任务中面临复杂柔性环境的特点,在超声机器人运动自主决策的基础上提出超声机器人运动空间优化策略。最终实现在避免参数调整和复杂动态环境的情况下,对不同人体部位进行自动的机器人超声成像。
  • 图  1  智能超声机器人成像控制方法与系统框架

    图  2  面向超声成像任务的机器人柔性控制策略

    图  3  超声机器人成像过程中智能体控制和路径规划输入场景与超声探头接触情况对比

    图  4  超声机器人在智能体输出的指令的控制下对动态目标做出成像动作

    图  5  不确定复杂柔性曲面上两例超声机器人成像过程

    图  6  自主机器人超声成像系统对真实人体进行超声扫描场景

    表  1  强化学习方法与路径规划方法对不同柔性体模的成像成功率对比

    方法-体模运动-环境成功率(%)
    体模1体模2体模3
    强化学习-静态-无干扰96.793.395.0
    强化学习-静态-有干扰86.776.785.0
    强化学习-动态-无干扰93.390.091.7
    强化学习-动态-有干扰81.771.680.0
    路径规划-静态-无干扰100.093.393.3
    路径规划-静态-有干扰68.370.070.0
    路径规划-动态-无干扰73.373.375.0
    路径规划-动态-有干扰61.758.353.3
    下载: 导出CSV

    表  2  自主机器人超声成像过程中超声探头受到不同方向的接触力

    编号接触力(N)力矩(N·m)
    xyzRxRy
    10.51±0.260.88±1.45–7.17±3.310.035±0.0060.138±0.0235
    20.48±0.331.08±0.58–8.31±2.83–0.059±0.0030.084±0.0175
    30.73±0.490.77±1.51–8.32±2.770.036±0.1110.133±0.0912
    40.43±0.521.04±0.64–8.78±2.21–0.063±0.0870.076±0.0201
    下载: 导出CSV

    表  3  自主超声机器人扫描和人工扫描图像中皮肤区域面积结果对比

    编号评估参数
    面积(cm2)面积比(%)
    机器人3.12±0.2311.2±1.24
    手动3.44±0.3913.4±0.59
    下载: 导出CSV
  • [1] VON HAXTHAUSEN F, BÖTTGER F, WULFF S, et al. Medical robotics for ultrasound imaging: Current systems and future trends[J]. Current Robotics Reports, 2021, 2(1): 55–71. doi: 10.1007/s43154-020-00037-y
    [2] CHEN Fang, LIU Jia, and LIAO Hongen. 3D catheter shape determination for endovascular navigation using a two-step particle filter and ultrasound scanning[J]. IEEE Transactions on Medical Imaging, 2017, 36(3): 685–695. doi: 10.1109/TMI.2016.2635673
    [3] BEALES L, WOLSTENHULME S, EVANS J A, et al. Reproducibility of ultrasound measurement of the abdominal aorta[J]. British Journal of Surgery, 2011, 98(11): 1517–1525. doi: 10.1002/bjs.7628
    [4] CARDINAL H N, GILL J D, and FENSTER A. Analysis of geometrical distortion and statistical variance in length, area, and volume in a linearly scanned 3-D ultrasound image[J]. IEEE Transactions on Medical Imaging, 2000, 19(6): 632–651. doi: 10.1109/42.870670
    [5] SUNG G T and GILL I S. Robotic laparoscopic surgery: A comparison of the da Vinci and Zeus systems[J]. Urology, 2001, 58(6): 893–898. doi: 10.1016/S0090-4295(01)01423-6
    [6] HUANG Qinghua, LAN Jiulong, and LI Xuelong. Robotic arm based automatic ultrasound scanning for three-dimensional imaging[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 1173–1182. doi: 10.1109/TII.2018.2871864
    [7] JIANG Zhongliang, ZHOU Yue, BI Yuan, et al. Deformation-aware robotic 3D ultrasound[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7675–7682. doi: 10.1109/LRA.2021.3099080
    [8] HOUSDEN J, WANG Shuangyi, BAO Xianqiang, et al. Towards standardized acquisition with a dual-probe ultrasound robot for fetal imaging[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1059–1065. doi: 10.1109/LRA.2021.3056033
    [9] JIANG Zhongliang, GRIMM M, ZHOU Mingchuan, et al. Automatic normal positioning of robotic ultrasound probe based only on confidence map optimization and force measurement[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1342–1349. doi: 10.1109/LRA.2020.2967682
    [10] MEROUCHE S, ALLARD L, MONTAGNON E, et al. A robotic ultrasound scanner for automatic vessel tracking and three-dimensional reconstruction of b-mode images[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(1): 35–46. doi: 10.1109/TUFFC.2015.2499084
    [11] NING Guochen, ZHANG Xinran, and LIAO Hongen. Autonomic robotic ultrasound imaging system based on reinforcement learning[J] IEEE Transactions on Biomedical Engineering, 2021, 68(9): 2787–2797.
    [12] HENNERSPERGER C, FUERST B, VIRGA S, et al. Towards MRI-based autonomous robotic US acquisitions: A first feasibility study[J]. IEEE Transactions on Medical Imaging, 2017, 36(2): 538–548. doi: 10.1109/TMI.2016.2620723
    [13] CHATELAIN P, KRUPA A, and MARCHAL M. Real-time needle detection and tracking using a visually servoed 3D ultrasound probe[C]. 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2013: 1676–1681.
    [14] LI Keyu, XU Yangxin, and MENG M Q H. An overview of systems and techniques for autonomous robotic ultrasound acquisitions[J]. IEEE Transactions on Medical Robotics and Bionics, 2021, 3(2): 510–524. doi: 10.1109/TMRB.2021.3072190
    [15] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
    [16] NGUYEN T T, NGUYEN N D, and NAHAVANDI S. Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3826–3839. doi: 10.1109/TCYB.2020.2977374
    [17] SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: MIT Press, 2018.
    [18] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv: 1707.06347, 2017.
    [19] SCHULMAN J, LEVINE S, ABBEEL P, et al. Trust region policy optimization[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 1889–1897.
    [20] UGURLU B, HAVOUTIS I, SEMINI C, et al. Pattern generation and compliant feedback control for quadrupedal dynamic trot-walking locomotion: Experiments on RoboCat-1 and HyQ[J]. Autonomous Robots, 2015, 38(4): 415–437. doi: 10.1007/s10514-015-9422-7
    [21] VARIN P, GROSSMAN L, and KUINDERSMA S. A comparison of action spaces for learning manipulation tasks[C]. Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 2019: 6015–6021.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1392
  • HTML全文浏览量:  786
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-12-23
  • 录用日期:  2021-12-27
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回