高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏光片细微外观缺陷偏振成像检测方法

黄广俊 列智豪 王兴政 钟小品 邓元龙

黄广俊, 列智豪, 王兴政, 钟小品, 邓元龙. 偏光片细微外观缺陷偏振成像检测方法[J]. 电子与信息学报, 2022, 44(5): 1636-1642. doi: 10.11999/JEIT210870
引用本文: 黄广俊, 列智豪, 王兴政, 钟小品, 邓元龙. 偏光片细微外观缺陷偏振成像检测方法[J]. 电子与信息学报, 2022, 44(5): 1636-1642. doi: 10.11999/JEIT210870
HUANG Guangjun, LIE Zhihao, WANG Xingzheng, ZHONG Xiaopin, DENG Yuanlong. Inspection of Slight Aesthetic Defects in a Polarizing Film via Polarization Imaging[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1636-1642. doi: 10.11999/JEIT210870
Citation: HUANG Guangjun, LIE Zhihao, WANG Xingzheng, ZHONG Xiaopin, DENG Yuanlong. Inspection of Slight Aesthetic Defects in a Polarizing Film via Polarization Imaging[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1636-1642. doi: 10.11999/JEIT210870

偏光片细微外观缺陷偏振成像检测方法

doi: 10.11999/JEIT210870
基金项目: 国家自然科学基金(62171288),深圳市基础研究项目(20190808143415801, 20180305123922293)
详细信息
    作者简介:

    黄广俊:男,1988年生,工程师,研究方向为视觉检测

    列智豪:男,1994年生,硕士生,研究方向为视觉检测

    王兴政:男,1984年生, 副教授, 研究方向为计算成像

    钟小品:男,1979年生,副教授,研究方向为视觉检测

    邓元龙:男,1971年生,教授,研究方向为视觉检测

    通讯作者:

    邓元龙 dengyl@szu.edu.cn

  • 中图分类号: TP274; TP391

Inspection of Slight Aesthetic Defects in a Polarizing Film via Polarization Imaging

Funds: The National Natural Science Foundation of China (62171288), Shenzhen Basic Research Project (20190808143415801, 20180305123922293)
  • 摘要: 针对偏光片细微外观缺陷难以成像、难以检测的问题,该文提出一种基于偏振成像的外观缺陷检测新方法。通过缺陷偏振态指标测量结果,定性描述了对比度增强机理。利用缺陷与正常区域之间透射光偏振态的显著差异,大幅提高缺陷的成像对比度,从而简化后续图像处理算法,提高检测速度和准确率。实验结果表明,偏光片外观缺陷平均检出率达到97.3%,平均单个样品检测时间约为0.22 s,基本满足产业化应用要求。
  • 图  1  检测系统

    图  2  不同成像方式下4种缺陷对比度(从左到右分别为均匀光成像、结构光成像、偏振光成像)

    图  3  缺陷偏振特性测试系统

    图  4  凹痕缺陷偏振态测量结果

    图  5  常见6种细微缺陷原始图像及其RPCA分解稀疏矩阵图像的二值化结果

    图  6  两个典型缺陷成像效果对比

    表  1  凹痕缺陷对比度

    偏光片样本与检偏器夹角(º)
    0102030405060708090
    对比度(%)11.011.612.012.714.314.112.111.610.28.8
    下载: 导出CSV

    表  2  偏振态指标的最大差值(缺陷与正常区域之间)

    缺陷类型偏振度(%)线偏振度(%)圆偏振度(%)偏振角(°)椭圆率角(°)
    水胶粒4.844.548.500.462.81
    亮点2.202.231.451.581.59
    蝶纹1.792.066.652.612.74
    划伤1.822.841.501.260.23
    突起6.436.440.690.320.51
    下载: 导出CSV

    表  3  缺陷检出率对比

    缺陷类型数量结构光成像偏振成像
    检出数量检出率(%)检出数量检出率(%)
    突起3003100.0
    捏痕3003100.0
    刺伤4004100.0
    指痕500480.0
    蝶纹7571.47100.0
    亮点363391.73494.4
    水胶粒383694.73797.4
    划伤545296.354100.0
    总计15012684.014697.3
    下载: 导出CSV
  • [1] YOON Y G, LEE S L, CHUNG C W, et al. An effective defect inspection system for polarized film images using image segmentation and template matching techniques[J]. Computers & Industrial Engineering, 2008, 55(3): 567–583. doi: 10.1016/j.cie.2008.01.015
    [2] KUO C C F J, CHIU C H, and CHOU Y C. Research and development of intelligent on-line real-time defect inspection system for polymer polarizer[J]. Polymer-Plastics Technology and Engineering, 2009, 48(2): 185–192. doi: 10.1080/03602550802634501
    [3] CHENG C C and JAO H M. Application of the Haar wavelet to Mura detection for polarizer[C]. 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, 2013: 1080–1085.
    [4] YEN H N and SYU M J. Inspection of polarizer tiny bump defects using computer vision[C]. 2015 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, 2015: 525–527.
    [5] WON Y, JOO H, and KIM J. Classification of defects in the polarizer of display panels using the Convolution Neural Network (CNN)[J]. International Journal of Computing, Communications and Instrumentation Engineering (IJCCIE), 2017, 4(1): 139–142. doi: 10.15242/IJCCIE.E0217018.
    [6] KUO C F J, LAI Chunyu, KAO C H, et al. Integrating image processing and classification technology into automated polarizing film defect inspection[J]. Optics and Lasers in Engineering, 2018, 104: 204–219. doi: 10.1016/j.optlaseng.2017.09.017
    [7] LEI Haiwei, WANG Bin, WU Hehe, et al. Defect detection for polymeric polarizer based on faster R-CNN[J]. Journal of Information Hiding and Multimedia Signal Processing, 2018, 9(6): 1414–1420. doi: 10.15242/ijccie.e0217018
    [8] LIU Ruizhen, SUN Zhiyi, WANG Anhong, et al. Lightweight efficient network for defect classification of polarizers[J]. Concurrency and Computation:Practice and Experience, 2020, 32(11): e5663. doi: 10.1002/cpe.5663
    [9] LAI Wenwei, ZENG Xiaoxing, HE Jian, et al. Aesthetic defect characterization of a polymeric polarizer via structured light illumination[J]. Polymer Testing, 2016, 53: 51–57. doi: 10.1016/j.polymertesting.2016.05.011
    [10] DENG Yuanlong, XU Shaopeng, CHEN Haoquan, et al. Inspection of extremely slight aesthetic defects in a polymeric polarizer using the edge of light between black and white stripes[J]. Polymer Testing, 2018, 65: 169–175. doi: 10.1016/j.polymertesting.2017.11.019
    [11] 熊志航, 廖然, 曾亚光, 等. 利用偏振成像在复杂现场快速识别金属碎屑[J]. 红外与激光工程, 2020, 49(6): 10–15. doi: 10.3788/IRLA20201012

    XIONG Zhihang, LIAO Ran, ZENG Yaguang, et al. Rapid identification of metal debris in complicated scenes by using polarization imaging[J]. Infrared and Laser Engineering, 2020, 49(6): 10–15. doi: 10.3788/IRLA20201012
    [12] 李嘉晋, 廖然, 卓泽鹏, 等. 利用偏振光散射技术的藻类絮凝过程监测[J]. 大气与环境光学学报, 2020, 15(1): 72–80. doi: 10.3969/J.issn.1673-6141.2020.01.008

    LI Jiajin, LIAO Ran, ZHUO Zepeng, et al. Monitoring of algal flocculation using polarized light scattering[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 72–80. doi: 10.3969/J.issn.1673-6141.2020.01.008
    [13] FECHNER G T, HOWES D H, and BORING E G. Elements of Psychophysics[M]. New York: Holt, Rinehart and Winston, 1966. doi: 10.1037/11304–026.
    [14] 罗勇江, 杨腾飞, 赵冬. 色噪声下基于白化频谱重排鲁棒主成分分析的语音增强算法[J]. 电子与信息学报, 2021, 43(12): 3671–3679. doi: 10.11999/JEI200594

    LUO Yongjiang, YANG Tengfei, and ZHAO Dong. Speech enhancement algorithm based on robust principal component analysis with whitened spectrogram rearrangement in colored noise[J]. Journal of Electronics and Information Technology, 2021, 43(12): 3671–3679. doi: 10.11999/JEI200594
    [15] 杨依忠, 汪鹏飞, 胡雄楼, 等. 基于鲁棒主成分分析的运动目标检测优化算法[J]. 电子与信息学报, 2018, 40(6): 1309–1315. doi: 10.11999/JEIT170789

    YANG Yizhong, WANG Pengfei, HU Xionglou, et al. Moving object detection optimization algorithm based on robust principal component analysis[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1309–1315. doi: 10.11999/JEIT170789
    [16] CHIPMAN R A, LAM W S T, and YOUNG G. Polarized Light and Optical Systems[M]. New York: CRC Press, 2018: 66–68.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1602
  • HTML全文浏览量:  1328
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 修回日期:  2021-11-01
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2022-05-25

目录

    /

    返回文章
    返回