高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

哈默斯坦非线性时变系统的加权学习辨识方法

仲国民 俞其乐 陈强

仲国民, 俞其乐, 陈强. 哈默斯坦非线性时变系统的加权学习辨识方法[J]. 电子与信息学报, 2022, 44(5): 1610-1616. doi: 10.11999/JEIT210857
引用本文: 仲国民, 俞其乐, 陈强. 哈默斯坦非线性时变系统的加权学习辨识方法[J]. 电子与信息学报, 2022, 44(5): 1610-1616. doi: 10.11999/JEIT210857
ZHONG Guomin, YU Qile, CHEN Qiang. Weighted Learning Identification Method for Hammerstein Nonlinear Time-varying Systems[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1610-1616. doi: 10.11999/JEIT210857
Citation: ZHONG Guomin, YU Qile, CHEN Qiang. Weighted Learning Identification Method for Hammerstein Nonlinear Time-varying Systems[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1610-1616. doi: 10.11999/JEIT210857

哈默斯坦非线性时变系统的加权学习辨识方法

doi: 10.11999/JEIT210857
基金项目: 国家自然科学基金(62073291, 62973274)
详细信息
    作者简介:

    仲国民:男,1983年生,博士生,研究方向为系统辨识与学习控制

    俞其乐:男,1997年生,硕士生,研究方向为学习辨识

    陈强:男,1984年生,副教授,硕士生导师,主要研究方向为自适应与学习控制

    通讯作者:

    仲国民 zgm@zjut.edu.cn

  • 中图分类号: TN911.7; TP181

Weighted Learning Identification Method for Hammerstein Nonlinear Time-varying Systems

Funds: The National Natural Science Foundation of China (62073291, 62973274)
  • 摘要: 针对有限区间哈默斯坦(Hammerstein)非线性时变系统,该文提出一种加权迭代学习算法用以估计系统时变参数。首先将Hammerstein系统输入非线性部分进行多项式展开,采用迭代学习最小二乘算法辨识系统的时变参数。为了防止数据饱和,采用带遗忘因子的迭代学习最小二乘算法,进而引入权矩阵,采用加权迭代学习最小二乘算法改进系统跟踪误差,以提高辨识精度。该文分别给出3种算法的推导过程并进行仿真验证。结果表明,与迭代学习最小二乘算法和带遗忘因子迭代学习最小二乘算法相比,加权迭代学习最小二乘算法具有辨识精度高、跟踪误差小以及迭代次数少等优点。
  • 图  1  哈默斯坦系统CARMA模型

    图  2  采用加权迭代学习最小二乘算法的参数估计结果

    图  3  采用3种不同算法的模型输出误差比较

    图  4  采用3种算法的参数估计误差比较

    表  1  采用加权迭代学习最小二乘算法进行参数估计流程图

     输入:重复激励的一组数列
     输出:堆积的输出向量${{\boldsymbol{Y}}_k}(t)$
     (1) 对于所有的$t = {\text{0,1} },\cdots,N$,给定参数估计的初始值
       ${\hat \theta _{ - 1}}(t)$=0,迭代所需的${\hat v_k}(t)$,$ {q_1} $及${r_1}$,并置$k = {\text{0}}$;
     (2) While $k \le {K_{ {\text{max} } } }$(${K_{{\text{max}}}}$为最大迭代次数)
     (3)  for each $t \in [0,N]$
     (4)    在第$k$次重复运行时,采集输入数据${u_k}(t)$,计算输出
       数据${y_k}(t)$;
     (5)    计算${{\boldsymbol{Q}}_k}$和${\boldsymbol{\varPhi} } _k^{}(t)[{\hat {\boldsymbol{\phi}} _k}(t)]$;
     (6)    通过式(46)计算得出${\hat {\boldsymbol{\theta}} _k}(t)$;
     (7)    利用式(23)更新${\hat v_k}(t)$;
     (8)   End
     (9) 检验迭代停止条件,满足则停止;否则置$k = k + {\text{1}}$,并回到
       第3步;
     (10) End
    下载: 导出CSV
  • [1] WANG Dongqing, ZHANG Shuo, GAN Min, et al. A novel EM identification method for hammerstein systems with missing output data[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2500–2508. doi: 10.1109/TII.2019.2931792
    [2] CERONE V, RAZZA V, and REGRUTO D. One-shot set-membership identification of Generalized Hammerstein–Wiener systems[J]. Automatica, 2020, 118: 109028. doi: 10.1016/j.automatica.2020.109028
    [3] LYU Bensheng, LI Jia, and LI Feng. Neuro-fuzzy based identification of Hammerstein OEAR systems[J]. Computers & Chemical Engineering, 2020, 141: 106984. doi: 10.1016/j.compchemeng.2020.106984
    [4] 贾立, 李训龙. Hammerstein模型辨识的回顾及展望[J]. 控制理论与应用, 2014, 31(1): 1–10. doi: 10.7641/CTA.2014.30478

    JIA Li and LI Xunlong. Identification of Hammerstein model: Review and prospect[J]. Control Theory &Applications, 2014, 31(1): 1–10. doi: 10.7641/CTA.2014.30478
    [5] WESTWICK D and VERHAEGEN M. Identifying MIMO Wiener systems using subspace model identification methods[J]. Signal Processing, 1996, 52(2): 235–258. doi: 10.1016/0165-1684(96)00056-4
    [6] LOVERA M, GUSTAFSSON T, and VERHAEGEN M. Recursive subspace identification of linear and non-linear Wiener state-space models[J]. Automatica, 2000, 36(11): 1639–1650. doi: 10.1016/S0005-1098(00)00103-5
    [7] JALALEDDINI K and KEARNEY R E. Subspace identification of SISO hammerstein systems: Application to stretch reflex identification[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2725–2734. doi: 10.1109/TBME.2013.2264216
    [8] GOETHALS I, PELCKMANS K, SUYKENS J A K, et al. Subspace identification of hammerstein systems using least squares support vector machines[J]. IEEE Transactions on Automatic Control, 2005, 50(10): 1509–1519. doi: 10.1109/TAC.2005.856647
    [9] BAI Erwei. An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems[J]. Automatica, 1998, 34(3): 333–338. doi: 10.1016/S0005-1098(97)00198-2
    [10] CHANG F H I and LUUS R. A noniterative method for identification using Hammerstein model[J]. IEEE Transactions on Automatic Control, 1971, 16(5): 464–468. doi: 10.1109/TAC.1971.1099787
    [11] WANG Dongqing and DING Feng. Least squares based and gradient based iterative identification for Wiener nonlinear systems[J]. Signal Processing, 2011, 91(5): 1182–1189. doi: 10.1016/j.sigpro.2010.11.004
    [12] WANG Dongqing, FAN Qiuhua, and MA Yan. An interactive maximum likelihood estimation method for multivariable Hammerstein systems[J]. Journal of the Franklin Institute, 2020, 357(17): 12986–13005. doi: 10.1016/j.jfranklin.2020.09.005
    [13] GREBLICKI W and PAWLAK M. The weighted nearest neighbor estimate for Hammerstein system identification[J]. IEEE Transactions on Automatic Control, 2019, 64(4): 1550–1565. doi: 10.1109/TAC.2018.2866463
    [14] MZYK G and WACHEL P. Kernel-based identification of Wiener–Hammerstein system[J]. Automatica, 2017, 83: 275–281. doi: 10.1016/j.automatica.2017.06.038
    [15] GIORDANO G, GROS S, and SJÖBERG J. An improved method for Wiener-Hammerstein system identification based on the Fractional Approach[J]. Automatica, 2018, 94: 349–360. doi: 10.1016/j.automatica.2018.04.046
    [16] SUNG S W. System identification method for Hammerstein processes[J]. Industrial & Engineering Chemistry Research, 2002, 41(17): 4295–4302. doi: 10.1021/ie0109206
    [17] JIA Li, LI Xunlong, and CHIU M S. Correlation analysis based MIMO neuro-fuzzy Hammerstein model with noises[J]. Journal of Process Control, 2016, 41: 76–91. doi: 10.1016/j.jprocont.2015.11.006
    [18] DING Feng, SHI Yang, and CHEN Tongwen. Gradient-based identification methods for hammerstein nonlinear ARMAX models[J]. Nonlinear Dynamics, 2006, 45(1/2): 31–43. doi: 10.1007/s11071-005-1850-z
    [19] REN Biying, XIE Chenxue, SUN Xiangdong, et al. Parameter identification of a lithium-ion battery based on the improved recursive least square algorithm[J]. IET Power Electronics, 2020, 13(12): 2531–2537. doi: 10.1049/iet-pel.2019.1589
    [20] ZHANG Bo, TANG Yinggan, and LU Yao. Identification of linear time-varying fractional order systems using block pulse functions based on repetitive principle[J]. ISA Transactions, 2022, 123: 218–229.
    [21] 孙明轩, 毕宏博. 学习辨识: 最小二乘算法及其重复一致性[J]. 自动化学报, 2012, 38(5): 698–706. doi: 10.3724/SP.J.1004.2012.00698

    SUN Mingxuan and BI Hongbo. Learning identification: Least squares algorithms and their repetitive consistency[J]. Acta Automatica Sinica, 2012, 38(5): 698–706. doi: 10.3724/SP.J.1004.2012.00698
    [22] SONG Fazhi, LIU Yang, WANG Xianli, et al. Enhancing accuracy and numerical stability for repetitive time-varying system identification: An iterative learning approach[J]. IEEE Access, 2020, 8: 25679–25690. doi: 10.1109/ACCESS.2020.2966300
    [23] LIU Nanjun and ALLEYNE A. Iterative learning identification for linear time-varying systems[J]. IEEE Transactions on Control Systems Technology, 2016, 24(1): 310–317. doi: 10.1109/TCST.2015.2424374
    [24] DING Feng, XU Ling, MENG Dandan, et al. Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model[J]. Journal of Computational and Applied Mathematics, 2020, 369: 112575. doi: 10.1016/j.cam.2019.112575
    [25] DING Jie, CAO Zhengxin, CHEN Jiazhong, et al. Weighted parameter estimation for hammerstein nonlinear ARX systems[J]. Circuits, Systems, and Signal Processing, 2020, 39(4): 2178–2192. doi: 10.1007/s00034-019-01261-4
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  532
  • HTML全文浏览量:  289
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-19
  • 修回日期:  2022-01-07
  • 录用日期:  2022-01-12
  • 网络出版日期:  2022-02-02
  • 刊出日期:  2022-05-10

目录

    /

    返回文章
    返回