高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

奇异值分解域差异性度量的低景深图像显著性目标提取方法

章秀华 程鉴 洪汉玉 张天序

章秀华, 程鉴, 洪汉玉, 张天序. 奇异值分解域差异性度量的低景深图像显著性目标提取方法[J]. 电子与信息学报, 2022, 44(11): 3987-3997. doi: 10.11999/JEIT210854
引用本文: 章秀华, 程鉴, 洪汉玉, 张天序. 奇异值分解域差异性度量的低景深图像显著性目标提取方法[J]. 电子与信息学报, 2022, 44(11): 3987-3997. doi: 10.11999/JEIT210854
ZHANG Xiuhua, CHENG Jian, HONG Hanyu, ZHANG Tianxu. Salient Target Extraction from Low Depth of Field Images Based on Diversity Measure in Singular Value Decomposition Domain[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3987-3997. doi: 10.11999/JEIT210854
Citation: ZHANG Xiuhua, CHENG Jian, HONG Hanyu, ZHANG Tianxu. Salient Target Extraction from Low Depth of Field Images Based on Diversity Measure in Singular Value Decomposition Domain[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3987-3997. doi: 10.11999/JEIT210854

奇异值分解域差异性度量的低景深图像显著性目标提取方法

doi: 10.11999/JEIT210854
基金项目: 国家自然科学基金(62171329, 61671337)
详细信息
    作者简介:

    章秀华:女,博士,副教授,研究方向为光电信息处理、机器视觉、光学三维测量

    程鉴:男,硕士生,研究方向为机器视觉检测

    洪汉玉:男,博士生导师,教授,研究方向为模式识别与智能系统、机器视觉、光学三维测量

    张天序:男,博士生导师,教授,研究方向为模式识别与智能系统、多谱图像处理

    通讯作者:

    章秀华 amyyzxh@sina.com

  • 中图分类号: TN911.73; TP391.4

Salient Target Extraction from Low Depth of Field Images Based on Diversity Measure in Singular Value Decomposition Domain

Funds: The National Natural Science Foundation of China (62171329, 61671337)
  • 摘要: 针对低景深图像(DOF)目标提取过程中,容易出现目标提取不完整或背景被误识为目标等现象,该文提出一种奇异值分解 (SVD)域差异性度量的低景深图像目标提取方法。先对低景深图像进行高斯模糊,以图像中每一个像素点为中心,利用滑动窗口分别截取模糊前后图像上相同位置的图像块并进行奇异值分解,再构造两奇异值之间的差异特征向量,针对此向量定义低中高全频段信息加权的差异性度量算子,计算对应像素点的显著性特征值,逐像素处理得到显著性结果图并进行阈值化处理,实现低景深图像目标的有效提取。对大量低景深图像进行处理,并与几种现有方法进行比较,提出方法的F度量值最大可提高54%,平均绝对误差减少76%~87%,可完整提取目标并有效去除背景,具有较强的可靠性。
  • 图  1  低景深图像中离焦模糊区域A和清晰目标区域B

    图  2  不同图像块的SVD奇异值分布

    图  3  模糊后不同图像块的SVD奇异值分布曲线

    图  4  奇异值分布曲线及其虚线框内局部放大图

    图  5  不同图像块的差异特征分布曲线

    图  6  单个像素特征强度计算流程示意图

    图  7  模糊因子取不同值时的特征显著性强度图

    图  8  不同模糊因子$ \sigma $对应的PM值曲线

    图  9  简单背景图像的不同方法处理结果

    图  10  复杂背景图像的不同方法处理结果

    图  11  区域分类示意图

    图  12  不同方法的PR曲线结果图

    表  1  像素特征度量值计算

     (1) 输入低景深图像$ f(x,y) $
     (2) 对$ f(x,y) $进行高斯模糊处理得到图像${f_{{\rm{blur}}} }(x,y)$
     (3) x=1:M 循环
     (4) y=1:N 循环
     (5) 式(5)、式(6),计算以(x,y)为中心的窗口大小图像块
       $ {f^k}(x,y) $和$f_{{\rm{blur}}}^k(x,y)$的SVD奇异值
     (6) 式(7), 计算两图像块奇异值差异特征向量$ {{\mathbf{\delta }}_\lambda } $
     (7) 利用度量式(8), 计算(x,y)像素点的特征度量值
     (8) 终止循环(4)
     (9) 终止循环(3)
     (10) 利用式(9)进行阈值化,得到目标提取结果图像
    下载: 导出CSV

    表  2  不同方法的F-measure值

    LCFTACHCSR文献[20]SVD-DM
    F-measure0.58670.60690.55880.49550.70940.89420.7639
    下载: 导出CSV

    表  3  不同方法对应的平均绝对误差值

    LCFTACHCSR文献[20]SVD-DM
    MAE0.64150.69930.73200.66290.39830.07280.0957
    下载: 导出CSV
  • [1] XU Guodong, QUAN Yuhui, and HUI Ji. Estimating defocus blur via rank of local patches[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5381–5389.
    [2] XIAN Ke, PENG Juewen, ZHANG Chao, et al. Ranking-based salient object detection and depth prediction for shallow depth-of-field[J]. Sensors, 2021, 21(5): 1815. doi: 10.3390/s21051815
    [3] RAFIEE G, DLAY S S, and WOO W L. Region-of-interest extraction in low depth of field images using ensemble clustering and difference of Gaussian approaches[J]. Pattern Recognition, 2013, 46(10): 2685–2699. doi: 10.1016/j.patcog.2013.03.006
    [4] WIRTH T, NABER A, and NAHM W. Combination of color and focus segmentation for medical images with low depth-of-field[J]. Current Directions in Biomedical Engineering, 2018, 4(1): 345–349. doi: 10.1515/cdbme-2018-0083
    [5] LIU Zhi, LI Weiwei, SHEN Liquan, et al. Automatic segmentation of focused objects from images with low depth of field[J]. Pattern Recognition Letters, 2010, 31(7): 572–581. doi: 10.1016/j.patrec.2009.11.016
    [6] HASSAN H, BASHIR A K, ABBASI R, et al. Single image defocus estimation by modified gaussian function[J]. Transactions on Emerging Telecommunications Technologies, 2019, 30(6): e3611. doi: 10.1002/ett.3611
    [7] LI Nianyi, YE Jinwei, JI Yu, et al. Saliency detection on light field[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1605–1616. doi: 10.1109/TPAMI.2016.2610425
    [8] BORJI A, CHENG Mingming, JIANG Huaizu, et al. Salient object detection: A benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706–5722. doi: 10.1109/TIP.2015.2487833
    [9] ZHAI Yun and SHAH M. Visual attention detection in video sequences using spatiotemporal cues[C]. The 14th ACM international conference on Multimedia, Santa Barbara, USA, 2006: 815–824.
    [10] ACHANTA R, ESTRADA F, WILS P, et al. Salient region detection and segmentation[C]. The 6th International Conference on Computer Vision Systems, Santorini, Greece, 2008: 66–75.
    [11] CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569–582. doi: 10.1109/TPAMI.2014.2345401
    [12] CHENG Mingming, ZHANG Guoxin, MITRA N J, et al. Global contrast based salient region detection[C]. 2011 IEEE Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011: 409–416.
    [13] HOU Xiaodi and ZHANG Liqing. Saliency detection: A spectral residual approach[C]. 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1–8.
    [14] GUO Chenlei, MA Qi, and ZHANG Liming. Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8.
    [15] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 1597–1604.
    [16] KIM J, HAN D, TAI Y W, et al. Salient region detection via high-dimensional color transform and local spatial support[J]. IEEE Transactions on Image Processing, 2016, 25(1): 9–23. doi: 10.1109/TIP.2015.2495122
    [17] BORJI A, CHENG Mingming, HOU Qibin, et al. Salient object detection: A survey[J]. Computational Visual Media, 2019, 5(2): 117–150. doi: 10.1007/s41095-019-0149-9
    [18] AHN S and CHONG J. Segmenting a noisy low-depth-of-field image using adaptive second-order statistics[J]. IEEE Signal Processing Letters, 2015, 22(3): 275–278. doi: 10.1109/LSP.2014.2357792
    [19] 邓小玲, 倪江群, 李震, 等. 多特征融合的低景深图像前景提取算法[J]. 自动化学报, 2013, 39(6): 846–851. doi: 10.3724/SP.J.1004.2013.00846

    DENG Xiaoling, NI Jiangqun, LI Zhen, et al. Foreground extraction from low depth-of-field images based on colour-texture and HOS Features[J]. Acta Automatica Sinica, 2013, 39(6): 846–851. doi: 10.3724/SP.J.1004.2013.00846
    [20] ZHAO Wenda, ZHAO Fan, WANG Dong, et al. Defocus blur detection via multi-stream bottom-top-bottom network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 1884–1897. doi: 10.1109/TPAMI.2019.2906588
    [21] WANG Lijun, SHEN Xiaohui, ZHANG Jianming, et al. DeepLens: Shallow depth of field from a single image[J]. ACM Transactions on Graphics, 2018, 37(6): 245. doi: 10.1145/3272127.3275013
    [22] WANG Wenguan, LAI Qiuxia, FU Huazhu, et al. Salient object detection in the deep learning era: An in-depth survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43: 1–20. doi: 10.1109/TPAMI.2021.3051099.
    [23] 季正燕, 陈辉, 张佳佳, 等. 一种基于奇异值分解的解相干算法[J]. 电子与信息学报, 2017, 39(8): 1913–1918. doi: 10.11999/JEIT161157

    JI Zhengyan, CHEN Hui, ZHANG Jiajia, et al. Decorrelation algorithm based on singular value decomposition[J]. Journal of Electronics &Information Technology, 2017, 39(8): 1913–1918. doi: 10.11999/JEIT161157
    [24] LI Ping, WANG Hua, LI Xuemei, et al. An image denoising algorithm based on adaptive clustering and singular value decomposition[J]. IET Image Processing, 2021, 15(3): 598–614. doi: 10.1049/ipr2.12017
    [25] SANG Qingbing, YANG Yunshuo, LIU Lixiong, et al. Image quality assessment based on quaternion singular value decomposition[J]. IEEE Access, 2020, 8: 75925–75935. doi: 10.1109/ACCESS.2020.2989312
    [26] XIAO Huimei, LU Wei, LI Ruipeng, et al. Defocus blur detection based on multiscale SVD fusion in gradient domain[J]. Journal of Visual Communication and Image Representation, 2019, 59: 52–61. doi: 10.1016/j.jvcir.2018.12.048
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  789
  • HTML全文浏览量:  247
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 修回日期:  2021-12-10
  • 录用日期:  2021-12-13
  • 网络出版日期:  2021-12-26
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回