Explicit and Progressive Solution Method for Wigner-Ville Distribution of Prolate Spheroidal Wave Functions Signal
-
摘要: 针对现有的椭圆球面波函数(PSWFs)信号时频分析无显式表达式、数值仿真误差不可控、时频分布结果对称性缺失等问题,该文引入Legendre多项式以及Wigner-Ville分布(WVD),提出一种PSWFs信号WVD显式渐近求解方法。该方法根据误差要求,生成所需阶数的Legendre多项式WVD自项、交叉项,进而与对应的WVD-Legendre系数相乘后线性叠加,获取PSWFs信号WVD显式渐近表达式。理论及数值仿真结果表明,所提方法能够产生满足误差要求的PSWFs信号WVD显式渐近表达式,且能够有效保持信号原有的时域、频域对称性。此外,在相同采样点数情况下,相对于基于数值解的PSWFs信号WVD,所提方法获得的PSWFs信号WVD频域分辨率更高。
-
关键词:
- 椭圆球面波信号 /
- 时频分析 /
- Wigner-Ville分布 /
- 显式渐近
Abstract: Considering the problems of the existing time-frequency analysis of Prolate Spheroidal Wave Functions (PSWFs) signals without explicit expressions, uncontrollable numerical simulation errors, and lack of symmetry in the time-frequency distribution results, Legendre polynomials and Wigner- Ville Distribution (WVD) are introduced in this paper, and an explicit and progressive solution method for PSWFs signal WVD is proposed. According to the error requirements, this method generates the Legendre polynomial WVD self-terms and cross-terms of the required order, and then multiplies them with the corresponding WVD-Legendre coefficients and superimposes linearly them to obtain the explicit and progressive expression of the PSWFs signal WVD. Theoretical and numerical simulation results show that the proposed method can produce an explicit and progressive expression of the PSWFs signal WVD that meets the error requirements, and can effectively maintain the original time-domain and frequency-domain symmetry of the signal. In addition, in the case of the same number of sampling points, compared with the PSWFs signal WVD based on the numerical solution, the PSWFs signal WVD obtained by the proposed method has a higher frequency domain resolution. -
表 1 PSWFs信号仿真参数设置
参数 符号 数值 时间带宽积(rad·s) c 4π: 4π: 64π 符号周期(s) T 2 阶数 n 0~7 采样点数 N 128, 256, 512 -
[1] SLEPIAN D and POLLAK H O. Prolate spheroidal wave functions, Fourier analysis and uncertainty-I[J]. The Bell System Technical Journal, 1961, 40(1): 43–46. doi: 10.1002/j.1538-7305.1961.tb03976.x [2] WANG Hongxing, LU Faping, LIU Chuanhui, et al. Frequency domain multi-carrier modulation based on prolate spheroidal wave functions[J]. IEEE Access, 2020, 8: 99665–99680. doi: 10.1109/ACCESS.2020.2997679 [3] 陆发平, 王红星, 刘传辉, 等. 椭圆球面函数频域调制解调方法[J]. 电子与信息学报, 2020, 42(8): 1888–1895. doi: 10.11999/JEIT190642LU Faping, WANG Hongxing, LIU Chuanhui, et al. PSWFs frequency domain modulation and demodulation method[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1888–1895. doi: 10.11999/JEIT190642 [4] TAKAMI T, NIELSEN U D, and JENSEN J J. Estimation of autocorrelation function and spectrum density of wave-induced responses using prolate spheroidal wave functions[J]. Journal of Marine Science and Technology, 2021, 26(3): 772–791. doi: 10.1007/S00773-020-00768-9 [5] NAZARI S and FAEZ K. Spiking pattern recognition using informative signal of image and unsupervised biologically plausible learning[J]. Neurocomputing, 2019, 330: 196–211. doi: 10.1016/j.neucom.2018.10.066 [6] KARNIK S, ROMBERG J, and DAVENPORT M A. Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences[J]. Applied and Computational Harmonic Analysis, 2021, 55: 97–128. doi: 10.1016/J.ACHA.2021.04.002 [7] 王红星, 陆发平, 刘传辉, 等. 基于信号分组优化的椭圆球面波多载波调制解调方法[J]. 中国科学:信息科学, 2021, 51(7): 1168–1182. doi: 10.1360/SSI-2020-0007WANG Hongxing, LU Faping, LIU Chuanhui, et al. Multi-carrier modulation scheme based on prolate spheroidal wave functions with signal grouping optimization[J]. Scientia Sinica Informationis, 2021, 51(7): 1168–1182. doi: 10.1360/SSI-2020-0007 [8] 陆发平, 王红星, 刘传辉, 等. 基于功率复用的椭圆球面波函数非正交调制方法[J]. 航空学报, 2019, 40(9): 323102. doi: 10.7527/S1000-6893.2019.23102LU Faping, WANG Hongxing, LIU Chuanhui, et al. Power domain non-orthogonal pulse modulation based on prolate spheroidal wave function[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 323102. doi: 10.7527/S1000-6893.2019.23102 [9] 王红星, 陆发平, 刘传辉, 等. 椭圆球面波信号间交叉项时频分布特性研究[J]. 电子与信息学报, 2017, 39(6): 1319–1325. doi: 10.11999/JEIT160877WANG Hongxing, LU Faping, LIU Chuanhui, et al. Study on time-frequency characteristics of cross-terms between prolate spheroidal wave function signal[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1319–1325. doi: 10.11999/JEIT160877 [10] 缪幸吉, 王红星, 刘传辉, 等. 椭圆球面波函数信号时频分布特性研究[J]. 现代电子技术, 2020, 43(19): 14–18,22. doi: 10.16652/j.issn.1004-373x.2020.19.004MIAO Xingji, WANG Hongxing, LIU Chuanhui, et al. Research of time-frequency distribution characteristics of prolate spherical wave function signal[J]. Modern Electronics Technique, 2020, 43(19): 14–18,22. doi: 10.16652/j.issn.1004-373x.2020.19.004 [11] 黄隽逸, 王红星, 陆发平, 等. PSWFs信号时频域能量分布特性与正交性研究[J]. 无线电通信技术, 2020, 46(6): 682–688. doi: 10.3969/j.issn.1003-3114.2020.06.009HUANG Junyi, WANG Hongxing, LU Faping, et al. Study on energy distribution characteristics and orthogonality of PSWFs signal in time-frequency domain[J]. Radio Communications Technology, 2020, 46(6): 682–688. doi: 10.3969/j.issn.1003-3114.2020.06.009 [12] 吴国宁, 齐晶晶, 周亚同. 时频分析方法: 研究与展望[J]. 图像与信号处理, 2018, 7(1): 24–35. doi: 10.12677/jisp.2018.71003WU Guoning, QI Jingjing, and ZHOU Yatong. Time-frequency analysis method: Research and prospect[J]. Journal of Image and Signal Processing, 2018, 7(1): 24–35. doi: 10.12677/jisp.2018.71003 [13] 王德真, 王众毅, 王晓东. 基于Wigner-Ville时频分析的行波信号检测方法[J]. 电测与仪表, 2020, 57(3): 128–133. doi: 10.19753/j.issn1001-1390.2020.03.021WANG Dezhen, WANG Zhongyi, and WANG Xiaodong. The detection method for traveling wave based on Wigner-Ville time-frequency analysis[J]. Electrical Measurement &Instrumentation, 2020, 57(3): 128–133. doi: 10.19753/j.issn1001-1390.2020.03.021 [14] 陈彦江, 王凯, 马裕超, 等. 基于Wigner-Ville分布交叉项的独塔自锚式悬索桥损伤识别试验研究[J]. 振动与冲击, 2016, 35(6): 161–168. doi: 10.13465/j.cnki.jvs.2016.06.030CHEN Yanjiang, WANG Kai, MA Yuchao, et al. Experimental study of single-tower self-anchored suspension bridge damage identification based on cross terms of Wigner-Ville distribution[J]. Journal of Vibration and Shock, 2016, 35(6): 161–168. doi: 10.13465/j.cnki.jvs.2016.06.030 [15] 王红星, 陆发平, 刘传辉, 等. 严格奇偶对称的椭圆球面波函数信号构建与低复杂度检测方法[J]. 中国科学:信息科学, 2020, 50(5): 766–776. doi: 10.1360/SSI-2019-0121WANG Hongxing, LU Faping, LIU Chuanhui, et al. Strict parity symmetric prolate spheroidal wave functions signal construction and low complexity detection method[J]. Scientia Sinica Informationis, 2020, 50(5): 766–776. doi: 10.1360/SSI-2019-0121 [16] HODGE D B. Eigenvalues and eigenfunctions of the spheroidal wave equation[J]. Journal of Mathematical Physics, 1970, 11(8): 2308–2312. doi: 10.1063/1.1665398 [17] 胡广书. 现代信号处理教程[M]. 北京: 清华大学出版社, 2004: 72–75.HU Guangshu. Modern Signal Processing Course[M]. Beijing: Tsinghua University Press, 2004: 72–75. [18] FLAMMER C. Spheroidal Wave Functions[M]. Mineola: Dover Publications, 2005: 16–20. [19] XIAO H, ROKHLIN V, and YARVIN N. Prolate spheroidal wavefunctions, quadrature and interpolation[J]. Inverse Problems, 2001, 17(4): 805–833. doi: 10.1088/0266-5611/17/4/315 [20] FLANDRIN P. A time-frequency formulation of optimum detection[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(9): 1377–1384. doi: 10.1109/29.90365 [21] 赛雷, 王红星, 陆发平, 等. 一种大时间带宽积PSWF的显式渐近表达式[J]. 中国科学:信息科学, 2020, 50(10): 1574–1587. doi: 10.1360/SSI-2019-0092SAI Lei, WANG Hongxing, LU Faping, et al. An explicit asymptotic expression of large time-bandwidth product PSWF[J]. Scientia Sinica Informationis, 2020, 50(10): 1574–1587. doi: 10.1360/SSI-2019-0092