高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆球面波信号Wigner-Ville分布显式渐近求解方法

王红星 赵乐源 陆发平 刘传辉 康家方

王红星, 赵乐源, 陆发平, 刘传辉, 康家方. 椭圆球面波信号Wigner-Ville分布显式渐近求解方法[J]. 电子与信息学报, 2022, 44(10): 3574-3582. doi: 10.11999/JEIT210820
引用本文: 王红星, 赵乐源, 陆发平, 刘传辉, 康家方. 椭圆球面波信号Wigner-Ville分布显式渐近求解方法[J]. 电子与信息学报, 2022, 44(10): 3574-3582. doi: 10.11999/JEIT210820
WANG Hongxing, ZHAO Leyuan, LU Faping, LIU Chuanhui, KANG Jiafang. Explicit and Progressive Solution Method for Wigner-Ville Distribution of Prolate Spheroidal Wave Functions Signal[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3574-3582. doi: 10.11999/JEIT210820
Citation: WANG Hongxing, ZHAO Leyuan, LU Faping, LIU Chuanhui, KANG Jiafang. Explicit and Progressive Solution Method for Wigner-Ville Distribution of Prolate Spheroidal Wave Functions Signal[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3574-3582. doi: 10.11999/JEIT210820

椭圆球面波信号Wigner-Ville分布显式渐近求解方法

doi: 10.11999/JEIT210820
基金项目: 国家自然科学基金(61701518),山东省“泰山学者”建设工程专项经费基金(ts20081130)
详细信息
    作者简介:

    王红星:男,教授,研究方向为现代通信系统、非正弦波通信、无线光通信

    赵乐源:男,硕士生,研究方向为现代通信系统、非正弦波通信

    陆发平:男,博士,研究方向为现代通信系统、非正弦波通信、多载波调制

    刘传辉:男,讲师,研究方向为现代通信新技术、非正弦波通信

    康家方:男,讲师,研究方向为现代通信新技术、扩频通信、非正弦波通信

    通讯作者:

    赵乐源 zhaolyvip@163.com

  • 中图分类号: TN911.3

Explicit and Progressive Solution Method for Wigner-Ville Distribution of Prolate Spheroidal Wave Functions Signal

Funds: The National Natural Science Foundation of China (61701518), The Special Foundation Project of Taishan Scholar of Shandong Province (ts20081130)
  • 摘要: 针对现有的椭圆球面波函数(PSWFs)信号时频分析无显式表达式、数值仿真误差不可控、时频分布结果对称性缺失等问题,该文引入Legendre多项式以及Wigner-Ville分布(WVD),提出一种PSWFs信号WVD显式渐近求解方法。该方法根据误差要求,生成所需阶数的Legendre多项式WVD自项、交叉项,进而与对应的WVD-Legendre系数相乘后线性叠加,获取PSWFs信号WVD显式渐近表达式。理论及数值仿真结果表明,所提方法能够产生满足误差要求的PSWFs信号WVD显式渐近表达式,且能够有效保持信号原有的时域、频域对称性。此外,在相同采样点数情况下,相对于基于数值解的PSWFs信号WVD,所提方法获得的PSWFs信号WVD频域分辨率更高。
  • 图  1  PSWFs信号WVD显式渐近求解方法原理框图

    图  2  PSWFs信号对应的WVD-Legendre系数

    图  3  PSWFs信号MSE

    图  4  0阶PSWFs信号WVD

    表  1  PSWFs信号仿真参数设置

    参数符号数值
    时间带宽积(rad·s)c4π: 4π: 64π
    符号周期(s)T2
    阶数n0~7
    采样点数N128, 256, 512
    下载: 导出CSV
  • [1] SLEPIAN D and POLLAK H O. Prolate spheroidal wave functions, Fourier analysis and uncertainty-I[J]. The Bell System Technical Journal, 1961, 40(1): 43–46. doi: 10.1002/j.1538-7305.1961.tb03976.x
    [2] WANG Hongxing, LU Faping, LIU Chuanhui, et al. Frequency domain multi-carrier modulation based on prolate spheroidal wave functions[J]. IEEE Access, 2020, 8: 99665–99680. doi: 10.1109/ACCESS.2020.2997679
    [3] 陆发平, 王红星, 刘传辉, 等. 椭圆球面函数频域调制解调方法[J]. 电子与信息学报, 2020, 42(8): 1888–1895. doi: 10.11999/JEIT190642

    LU Faping, WANG Hongxing, LIU Chuanhui, et al. PSWFs frequency domain modulation and demodulation method[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1888–1895. doi: 10.11999/JEIT190642
    [4] TAKAMI T, NIELSEN U D, and JENSEN J J. Estimation of autocorrelation function and spectrum density of wave-induced responses using prolate spheroidal wave functions[J]. Journal of Marine Science and Technology, 2021, 26(3): 772–791. doi: 10.1007/S00773-020-00768-9
    [5] NAZARI S and FAEZ K. Spiking pattern recognition using informative signal of image and unsupervised biologically plausible learning[J]. Neurocomputing, 2019, 330: 196–211. doi: 10.1016/j.neucom.2018.10.066
    [6] KARNIK S, ROMBERG J, and DAVENPORT M A. Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences[J]. Applied and Computational Harmonic Analysis, 2021, 55: 97–128. doi: 10.1016/J.ACHA.2021.04.002
    [7] 王红星, 陆发平, 刘传辉, 等. 基于信号分组优化的椭圆球面波多载波调制解调方法[J]. 中国科学:信息科学, 2021, 51(7): 1168–1182. doi: 10.1360/SSI-2020-0007

    WANG Hongxing, LU Faping, LIU Chuanhui, et al. Multi-carrier modulation scheme based on prolate spheroidal wave functions with signal grouping optimization[J]. Scientia Sinica Informationis, 2021, 51(7): 1168–1182. doi: 10.1360/SSI-2020-0007
    [8] 陆发平, 王红星, 刘传辉, 等. 基于功率复用的椭圆球面波函数非正交调制方法[J]. 航空学报, 2019, 40(9): 323102. doi: 10.7527/S1000-6893.2019.23102

    LU Faping, WANG Hongxing, LIU Chuanhui, et al. Power domain non-orthogonal pulse modulation based on prolate spheroidal wave function[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 323102. doi: 10.7527/S1000-6893.2019.23102
    [9] 王红星, 陆发平, 刘传辉, 等. 椭圆球面波信号间交叉项时频分布特性研究[J]. 电子与信息学报, 2017, 39(6): 1319–1325. doi: 10.11999/JEIT160877

    WANG Hongxing, LU Faping, LIU Chuanhui, et al. Study on time-frequency characteristics of cross-terms between prolate spheroidal wave function signal[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1319–1325. doi: 10.11999/JEIT160877
    [10] 缪幸吉, 王红星, 刘传辉, 等. 椭圆球面波函数信号时频分布特性研究[J]. 现代电子技术, 2020, 43(19): 14–18,22. doi: 10.16652/j.issn.1004-373x.2020.19.004

    MIAO Xingji, WANG Hongxing, LIU Chuanhui, et al. Research of time-frequency distribution characteristics of prolate spherical wave function signal[J]. Modern Electronics Technique, 2020, 43(19): 14–18,22. doi: 10.16652/j.issn.1004-373x.2020.19.004
    [11] 黄隽逸, 王红星, 陆发平, 等. PSWFs信号时频域能量分布特性与正交性研究[J]. 无线电通信技术, 2020, 46(6): 682–688. doi: 10.3969/j.issn.1003-3114.2020.06.009

    HUANG Junyi, WANG Hongxing, LU Faping, et al. Study on energy distribution characteristics and orthogonality of PSWFs signal in time-frequency domain[J]. Radio Communications Technology, 2020, 46(6): 682–688. doi: 10.3969/j.issn.1003-3114.2020.06.009
    [12] 吴国宁, 齐晶晶, 周亚同. 时频分析方法: 研究与展望[J]. 图像与信号处理, 2018, 7(1): 24–35. doi: 10.12677/jisp.2018.71003

    WU Guoning, QI Jingjing, and ZHOU Yatong. Time-frequency analysis method: Research and prospect[J]. Journal of Image and Signal Processing, 2018, 7(1): 24–35. doi: 10.12677/jisp.2018.71003
    [13] 王德真, 王众毅, 王晓东. 基于Wigner-Ville时频分析的行波信号检测方法[J]. 电测与仪表, 2020, 57(3): 128–133. doi: 10.19753/j.issn1001-1390.2020.03.021

    WANG Dezhen, WANG Zhongyi, and WANG Xiaodong. The detection method for traveling wave based on Wigner-Ville time-frequency analysis[J]. Electrical Measurement &Instrumentation, 2020, 57(3): 128–133. doi: 10.19753/j.issn1001-1390.2020.03.021
    [14] 陈彦江, 王凯, 马裕超, 等. 基于Wigner-Ville分布交叉项的独塔自锚式悬索桥损伤识别试验研究[J]. 振动与冲击, 2016, 35(6): 161–168. doi: 10.13465/j.cnki.jvs.2016.06.030

    CHEN Yanjiang, WANG Kai, MA Yuchao, et al. Experimental study of single-tower self-anchored suspension bridge damage identification based on cross terms of Wigner-Ville distribution[J]. Journal of Vibration and Shock, 2016, 35(6): 161–168. doi: 10.13465/j.cnki.jvs.2016.06.030
    [15] 王红星, 陆发平, 刘传辉, 等. 严格奇偶对称的椭圆球面波函数信号构建与低复杂度检测方法[J]. 中国科学:信息科学, 2020, 50(5): 766–776. doi: 10.1360/SSI-2019-0121

    WANG Hongxing, LU Faping, LIU Chuanhui, et al. Strict parity symmetric prolate spheroidal wave functions signal construction and low complexity detection method[J]. Scientia Sinica Informationis, 2020, 50(5): 766–776. doi: 10.1360/SSI-2019-0121
    [16] HODGE D B. Eigenvalues and eigenfunctions of the spheroidal wave equation[J]. Journal of Mathematical Physics, 1970, 11(8): 2308–2312. doi: 10.1063/1.1665398
    [17] 胡广书. 现代信号处理教程[M]. 北京: 清华大学出版社, 2004: 72–75.

    HU Guangshu. Modern Signal Processing Course[M]. Beijing: Tsinghua University Press, 2004: 72–75.
    [18] FLAMMER C. Spheroidal Wave Functions[M]. Mineola: Dover Publications, 2005: 16–20.
    [19] XIAO H, ROKHLIN V, and YARVIN N. Prolate spheroidal wavefunctions, quadrature and interpolation[J]. Inverse Problems, 2001, 17(4): 805–833. doi: 10.1088/0266-5611/17/4/315
    [20] FLANDRIN P. A time-frequency formulation of optimum detection[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(9): 1377–1384. doi: 10.1109/29.90365
    [21] 赛雷, 王红星, 陆发平, 等. 一种大时间带宽积PSWF的显式渐近表达式[J]. 中国科学:信息科学, 2020, 50(10): 1574–1587. doi: 10.1360/SSI-2019-0092

    SAI Lei, WANG Hongxing, LU Faping, et al. An explicit asymptotic expression of large time-bandwidth product PSWF[J]. Scientia Sinica Informationis, 2020, 50(10): 1574–1587. doi: 10.1360/SSI-2019-0092
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  212
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 修回日期:  2022-01-03
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回