高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双视通路交互感知的轮廓检测方法

武薇 韩显修 范影乐

武薇, 韩显修, 范影乐. 基于双视通路交互感知的轮廓检测方法[J]. 电子与信息学报, 2022, 44(7): 2512-2521. doi: 10.11999/JEIT210818
引用本文: 武薇, 韩显修, 范影乐. 基于双视通路交互感知的轮廓检测方法[J]. 电子与信息学报, 2022, 44(7): 2512-2521. doi: 10.11999/JEIT210818
WU Wei, HAN Xianxiu, FAN Yingle. A Contour Detection Method Based on Interactive Perception Mechanism of Dual Visual Pathways[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2512-2521. doi: 10.11999/JEIT210818
Citation: WU Wei, HAN Xianxiu, FAN Yingle. A Contour Detection Method Based on Interactive Perception Mechanism of Dual Visual Pathways[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2512-2521. doi: 10.11999/JEIT210818

基于双视通路交互感知的轮廓检测方法

doi: 10.11999/JEIT210818
基金项目: 国家自然科学基金(61501154)
详细信息
    作者简介:

    武薇:女,1979年生,博士,讲师,研究方向为医学信息学、计算机图像处理

    韩显修:男,1997年生,硕士,研究方向为计算机图像处理

    范影乐:男,1975年生,博士,教授,研究方向为神经信息学、机器视觉与机器学习

    通讯作者:

    武薇 ww@hdu.edu.cn

  • 中图分类号: TN911.73

A Contour Detection Method Based on Interactive Perception Mechanism of Dual Visual Pathways

Funds: The National Natural Science Foundation of China(61501154)
  • 摘要: 基于生物视觉系统存在双视通路(VP)交互感知的机制,该文提出一种图像轮廓检测的新方法。首先针对皮层下视通路中视觉刺激流经多级不同尺度的感受野,提出一种多尺度轮廓融合的轮廓感知模型;接着基于皮层上视通路的对比度适应机制和方向敏感特性,获取显著性视觉特征;然后模拟双视通路的交互感知机制,分别在V1皮层中,构建一种信息流交互引导的脉冲编码模型,提取显著性轮廓;在上丘(SC)浅层提出一种特征调制的非经典感受野侧抑制模型,实现纹理抑制;最后对双视通路中的轮廓响应结果进行修正融合,得到最终轮廓响应。针对RUG40图像库的测试,整个数据集的最优平均P指标和每张图的最优平均P指标分别为0.51和 0.57;针对BSDS500图像库的测试,数据集尺度上最优(ODS)为0.68。结果表明该文方法能有效突显主体轮廓并且抑制纹理背景。通过该文提出的轮廓感知方法,为后续基于视觉机制的图像理解和分析提供了一种新的思路。
  • 图  1  轮廓检测算法框架

    图  2  信息流交互引导的神经编码示意图

    图  3  RuG40图像库的轮廓检测结果

    图  4  在RUG40中的定量实验测评结果

    图  5  BSDS500图像数据集部分图像的轮廓检测结果

    图  6  在BSDS500中的定量实验测评结果

    表  1  图3中不同算法的参数设置与性能评价指标

    图像方法$\alpha $t${e_{{\text{FP}}}}$${e_{{\text{FN}}}}$PFPS
    BuffaloISO0.60.10.250.280.593
    MCI0.70.30.180.290.591/22
    HDC0.20.30.160.270.661/27
    SNC0.90.20.430.210.581/10
    本文0.90.60.120.310.691/13
    Elephant2ISO1.00.10.230.360.54
    MCI0.40.30.280.330.58
    HDC0.20.30.240.290.63
    SNC0.90.10.520.240.54
    本文1.01.00.240.280.64
    HyenaISO0.90.10.210.270.61
    MCI0.60.50.190.220.65
    HDC0.10.20.280.200.67
    SNC0.90.10.270.220.63
    本文0.30.50.180.270.71
    下载: 导出CSV
  • [1] EDRESS I, AL-SABAWI E A, and YOUNUS M D. Design of fractional-order sobel filters for edge detections[J]. IOP Conference Series:Materials Science and Engineering, 2021, 1152(1): 012028. doi: 10.1088/1757-899X/1152/1/012028
    [2] GRIGORESCU C, PETKOV N, and WESTENBERG M A. Contour detection based on nonclassical receptive field inhibition[J]. IEEE Transactions on Image Processing, 2003, 12(7): 729–739. doi: 10.1109/TIP.2003.814250
    [3] YANG Kaifu, LI Chaoyi, and LI Yongjie. Multifeature-based surround inhibition improves contour detection in natural images[J]. IEEE Transactions on Image Processing, 2014, 23(12): 5020–5032. doi: 10.1109/TIP.2014.2361210
    [4] MELOTTI D, HEIMBACH K, RODRÍGUEZ-SÁNCHEZ A, et al. A robust contour detection operator with combined push-pull inhibition and surround suppression[J]. Information Sciences, 2020, 524: 229–240. doi: 10.1016/j.ins.2020.03.026
    [5] CHEN Zekun and CAI Rongtai. Contour detection by simulating the curvature cell in the visual cortex and its application to object classification[J]. IEEE Access, 2020, 8: 74472–74484. doi: 10.1109/ACCESS.2020.2988496
    [6] CHEN Shanshan and CAI Houde. Pulvinar involves in multiple pathways of emotion processing[J]. Advances in Psychological Science, 2015, 23(2): 234–240. doi: 10.3724/SP.J.1042.2015.00234
    [7] LIDDELL B J, BROWN K J, KEMP A H, et al. A direct brainstem-amygdala-cortical 'alarm' system for subliminal signals of fear[J]. NeuroImage, 2005, 24(1): 235–243. doi: 10.1016/j.neuroimage.2004.08.016
    [8] DICARLO J J, ZOCCOLAN D, and RUST N C. How does the brain solve visual object recognition?[J]. Neuron, 2012, 73(3): 425–434. doi: 10.1016/j.neuron.2012.01.010
    [9] EVANS H M. The Emotional brain: The mysterious underpinnings of emotional life[J]. Neuropsychoanalysis, 2000, 2(1): 91–95. doi: 10.1080/15294145.2000.10773288
    [10] WASSLE H and BOYCOTT B B. Functional architecture of the mammalian retina[J]. Physiological Reviews, 1991, 71(2): 447–480. doi: 10.1152/physrev.1991.71.2.447
    [11] WANG Luping, SARNAIK R, RANGARAJAN K, et al. Visual receptive field properties of neurons in the superficial superior colliculus of the mouse[J]. Journal of Neuroscience, 2010, 30(49): 16573–16584. doi: 10.1523/JNEUROSCI.3305-10.2010
    [12] DE FRANCESCHI G and SOLOMON S G. Visual response properties of neurons in the superficial layers of the superior colliculus of awake mouse[J]. The Journal of Physiology, 2018, 596(24): 6307–6332. doi: 10.1113/JP276964
    [13] LUSSIEZ R, CHANAURIA N, OUELHAZI A, et al. Effects of visual adaptation on orientation selectivity in cat secondary visual cortex[J]. The European Journal of Neuroscience, 2021, 53(2): 588–600. doi: 10.1111/ejn.14967
    [14] AHMADLOU M, ZWEIFEL L S, and HEIMEL J A. Functional modulation of primary visual cortex by the superior colliculus in the mouse[J]. Nature Communications, 2018, 9(1): 3895. doi: 10.1038/s41467-018-06389-6
    [15] HAN J K, KIM M S, KIM S I, et al. Investigation of leaky characteristic in a single-transistor-based leaky integrate-and-fire neuron[J]. IEEE Transactions on Electron Devices, 2021, 68(11): 5912–5915. doi: 10.1109/TED.2021.3110830
    [16] ALPERT S, GALUN M, BRANDT A, et al. Image segmentation by probabilistic bottom-up aggregation and cue integration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 315–327. doi: 10.1109/TPAMI.2011.130
    [17] KANEDA K, YANAGAWA Y, and ISA T. Inputs from visual cortex contribute to lateral inhibition in the mouse superior colliculus in vivo[J]. Neuroscience Research, 2009, 65(S1): S172. doi: 10.1016/j.neures.2009.09.905
    [18] CHEN Yanmei, NI Yiling, ZHOU Jianhong, et al. The amygdala responds rapidly to flashes linked to direct retinal innervation: A flash-evoked potential study across cortical and subcortical visual pathways[J]. Neuroscience Bulletin, 2021, 37(8): 1107–1118. doi: 10.1007/s12264-021-00699-4
    [19] CHEN Shu'nan, FAN Yingle, FANG Tao, et al. A contour detection method based on hierarchical structure response model in primary visual pathway[J]. Acta Automatica Sinica, 2022, 48(3): 820–833. doi: 10.16383/j.aas.c200046
    [20] MARTIN D R, FOWLKES C C, and MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 530–549. doi: 10.1109/TPAMI.2004.1273918
    [21] LIU Yun, CHENG Mingming, HU Xiaowei, et al. Richer convolutional features for edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1939–1946. doi: 10.1109/TPAMI.2018.2878849
    [22] XIE Saining and TU Zhuowen. Holistically-nested edge detection[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 1395–1403.
    [23] YANG Kaifu, GAO Shaobing, GUO Cefeng, et al. Boundary detection using double-opponency and spatial sparseness constraint[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2565–2578. doi: 10.1109/TIP.2015.2425538
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  486
  • HTML全文浏览量:  364
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 修回日期:  2022-05-10
  • 网络出版日期:  2022-05-20
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回