高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向6G的无人机通信综述

陈新颖 盛敏 李博 赵楠

陈新颖, 盛敏, 李博, 赵楠. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781-789. doi: 10.11999/JEIT210789
引用本文: 陈新颖, 盛敏, 李博, 赵楠. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781-789. doi: 10.11999/JEIT210789
CHEN Xinying, SHENG Min, LI Bo, ZHAO Nan. Survey on Unmanned Aerial Vehicle Communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781-789. doi: 10.11999/JEIT210789
Citation: CHEN Xinying, SHENG Min, LI Bo, ZHAO Nan. Survey on Unmanned Aerial Vehicle Communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781-789. doi: 10.11999/JEIT210789

面向6G的无人机通信综述

doi: 10.11999/JEIT210789
基金项目: 国家重点研发计划 (2020YFB1807002)
详细信息
    作者简介:

    陈新颖:女,1992年生,博士生,研究方向为无人机通信、隐蔽通信、物理层安全

    盛敏:女,1975年生,教授,博士生导师,研究方向为移动通信系统、移动自组织网、异构网络融合、空间信息网络

    李博:男,1983年生,副教授,博士生导师,研究方向为无线通信、空天地网络、海洋信息传感网、飞行自组织网络

    赵楠:男,1982年生,教授,博士生导师,研究方向为无人机通信、非正交多址接入、干扰管理、绿色通信

    通讯作者:

    赵楠 zhaonan@dlut.edu.cn

  • 中图分类号: TN915.0

Survey on Unmanned Aerial Vehicle Communications for 6G

Funds: The National Key R&D Program of China (2020YFB1807002)
  • 摘要: 5G的成功商用为日常生活带来了实质性的变化,如自动驾驶、万物互联等,然而随之也产生了更大的数据量需求,进而催生了第6代移动通信。相较于5G,6G在带宽、时延、覆盖等性能方面均需要有更大的提升。因此,该文针对全域覆盖、场景智联、信息耦合的6G网络中无人机(UAVs)的应用场景进行了综述。首先,针对无人机在空天地海一体化网络架构中的应用进行了陈述,重点讨论了无人机在不同场景中可能承担的角色及功能,如蜂群基站、全息投影部署、远距离中继通信以及数据采集等。然后,对6G中应用于无人机通信的太赫兹、超大规模天线、内生人工智能、智能反射面(IRS)、智能边缘计算、区块链、通信感知一体化等潜在关键技术进行了探讨。最后,对6G场景下无人机通信面临的续航时间、网络融合性、智能反射面兼容性、太赫兹通信研发以及用户安全等方面的技术挑战进行了展望。
  • 图  1  空天地海一体化网络架构

    图  2  无人机在6G移动通信中的主要应用

    图  3  6G无人机通信网络中的内生智能

    图  4  智能反射面在6G无人机通信中的应用

    图  5  6G无人机通信中的智能边缘计算

    表  1  6G移动网络各种场景中无人机通信的关键技术及功能

    参考文献关键技术无人机功能无人机数目(个)
    文献[21]空天地海一体化通信通信基站1
    文献[22]动态频谱共享采集传感器信息并发送至基站
    文献[23]有限长信道编码采集传感器信息并发送至基站
    文献[24]超大阵列天线与地面用户或基站通信1
    文献[25]太赫兹收发信息的用户4
    文献[26]人工智能接收信息进行自学习的用户
    文献[27]区块链、人工智能运送药品的用户1
    下载: 导出CSV
  • [1] 尤肖虎, 潘志文, 高西奇, 等. 5G移动通信发展趋势与若干关键技术[J]. 中国科学:信息科学, 2014, 44(5): 551–563. doi: 10.1360/N112014-00032

    YOU Xiaohu, PAN Zhiwen, GAO Xiqi, et al. The 5G mobile communication: The development trends and its emerging key techniques[J]. Scientia Sinica Informationis, 2014, 44(5): 551–563. doi: 10.1360/N112014-00032
    [2] LYU Feng, CHENG Nan, ZHU Hongzi, et al. Intelligent context-aware communication paradigm design for IoVs based on data analytics[J]. IEEE Network, 2018, 32(6): 74–82. doi: 10.1109/MNET.2018.1800067
    [3] GUAN Yueshi, WANG Yijie, BIAN Qing, et al. High-efficiency self-driven circuit with parallel branch for high frequency converters[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 926–931. doi: 10.1109/TPEL.2017.2724545
    [4] Cisco System. Cosic visual networking index: Global mobile data traffic forecast update, 2017–2022 white paper[S]. 2019.
    [5] 赛迪智库无线管理研究所. 6G概念及愿景白皮书[N]. 中国计算机报, 2020-05-11(008). doi: 10.28468/n.cnki.njsjb.2020.000054.
    [6] 张平, 牛凯, 田辉, 等. 6G移动通信技术展望[J]. 通信学报, 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022

    ZHANG Ping, NIU Kai, TIAN Hui, et al. Technology prospect of 6G mobile communications[J]. Journal on Communications, 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022
    [7] 谢莎, 李浩然, 李玲香, 等. 面向6G网络的太赫兹通信技术研究综述[J]. 移动通信, 2020, 44(6): 36–43. doi: 10.3969/j.issn.1006-1010.2020.06.006

    XIE Sha, LI Haoran, LI Lingxiang, et al. A survey of terahertz communication technologies for 6G networks[J]. Mobile Communications, 2020, 44(6): 36–43. doi: 10.3969/j.issn.1006-1010.2020.06.006
    [8] CHEN Shuaifei, ZHANG Jiayi, JIN Yu, et al. Wireless powered IoE for 6G: Massive access meets scalable cell-free massive MIMO[J]. China Communications, 2020, 17(12): 92–109. doi: 10.23919/JCC.2020.12.007
    [9] LONG Wenxuan, CHEN Rui, MARCO M, et al. A promising technology for 6G wireless networks: Intelligent refl ecting surface[J]. Journal of Communications and Information Networks, 2021, 6(1): 1–16. doi: 10.23919/JCIN.2021.9387701
    [10] LETAIEF K B, CHEN Wei, SHI Yuanming, et al. The roadmap to 6G: AI empowered wireless networks[J]. IEEE Communications Magazine, 2019, 57(8): 84–90. doi: 10.1109/MCOM.2019.1900271
    [11] ZHAO Nan, LU Weidang, SHENG Min, et al. UAV-assisted emergency networks in disasters[J]. IEEE Wireless Communications, 2019, 26(1): 45–51. doi: 10.1109/MWC.2018.1800160
    [12] CHEN Xinying, LI Dongdong, YANG Zhutian, et al. Securing aerial-ground transmission for NOMA-UAV networks[J]. IEEE Network, 2020, 34(6): 171–177. doi: 10.1109/MNET.011.2000101
    [13] WANG Jun, NA Zhenyu, and LIU Xin. Collaborative design of multi-UAV trajectory and resource scheduling for 6G-enabled internet of things[J]. IEEE Internet of Things Journal, 2021, 8(20): 15096–15106. doi: 10.1109/JIOT.2020.3031622
    [14] 刘超, 陆璐, 王硕, 等. 面向空天地一体多接入的融合6G网络架构展望[J]. 移动通信, 2020, 44(6): 116–120. doi: 10.3969/j.issn.1006-1010.2020.06.017

    LIU Chao, LU Lu, WANG Shuo, et al. Prospects for a multi-access air-space-terrestrial integrated 6G network architecture[J]. Mobile Communications, 2020, 44(6): 116–120. doi: 10.3969/j.issn.1006-1010.2020.06.017
    [15] KHUWAJA A A, CHEN Yunfei, ZHAO Nan, et al. A survey of channel modeling for UAV communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2804–2821. doi: 10.1109/COMST.2018.2856587
    [16] DUO Bin, WU Qingqing, YUAN Xiaojun, et al. Anti-jamming 3D trajectory design for UAV-enabled wireless sensor networks under probabilistic LoS channel[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 16288–16293. doi: 10.1109/TVT.2020.3040334
    [17] COSTANTINO D, ANGELINI M G, and VOZZA G. The engineering and assembly of a low cost UAV[C]. Proceedings of 2015 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 2015: 351–355. doi: 10.1109/MetroAeroSpace.2015.7180681.
    [18] DAI Cuiqin, ZHANG Mingjian, LI Chong, et al. QoE-aware intelligent satellite constellation design in satellite internet of things[J]. IEEE Internet of Things Journal, 2021, 8(6): 4855–4867. doi: 10.1109/JIOT.2020.3030263
    [19] ZHU Xiangming, JIANG Chunxiao, KUANG Linling, et al. Cooperative transmission in integrated terrestrial-satellite networks[J]. IEEE Network, 2019, 33(3): 204–210. doi: 10.1109/MNET.2018.1800164
    [20] SHAFIQUE T, TABASSUM H, and HOSSAIN E. Optimization of wireless relaying with flexible UAV-borne reflecting surfaces[J]. IEEE Transactions on Communications, 2021, 69(1): 309–325. doi: 10.1109/TCOMM.2020.3032700
    [21] NA Zhenyu, LIU Yue, SHI Jingcheng, et al. UAV-supported clustered NOMA for 6G-enabled internet of things: Trajectory planning and resource allocation[J]. IEEE Internet of Things, 2021, 8(20): 15041–15048. doi: 10.1109/JIOT.2020.3004432
    [22] ZHANG Shuhang, ZHANG Hongliang, and SONG Lingyang. Beyond D2D: Full dimension UAV-to-everything communications in 6G[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6592–6602. doi: 10.1109/TVT.2020.2984624
    [23] ZHANG Xi, WANG Jingqing, and POOR H V. Vincent. AoI-driven statistical delay and error-rate bounded QoS provisioning for mURLLC Over UAV-multimedia 6G mobile networks using FBC[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3425–3433. doi: 10.1109/JSAC.2021.3088625
    [24] CHANG Hengtai, WANG Chengxiang, LIU Yu, et al. A novel nonstationary 6G UAV-to-ground wireless channel model with 3-D arbitrary trajectory changes[J]. IEEE Internet of Things Journal, 2020, 8(12): 9865–9877. doi: 10.1109/JIOT.2020.3018479
    [25] SAEED A, GURBUZ O, BICEN A O, et al. Variable-bandwidth model and capacity analysis for aerial communications in the terahertz band[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1768–1784. doi: 10.1109/JSAC.2021.3071831
    [26] CHENG Hai, BERTIZZOLO L, D’ORO S, et al. Learning to fly: A distributed deep reinforcement learning framework for software-defined UAV network control[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1486–1504. doi: 10.1109/OJCOMS.2021.3092690
    [27] GUPTA R, SHUKLA A, and TANWAR S. BATS: A blockchain and ai-empowered drone-assisted telesurgery system towards 6G[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(4): 2958–2967. doi: 10.1109/TNSE.2020.3043262.
    [28] JIANG Xu, CHEN Xinying, TANG Jie, et al. Covert communication in UAV-assisted air-ground networks[J]. IEEE Wireless Communications, 2021, 28(4): 190–197. doi: 10.1109/MWC.001.2000454
    [29] CHEN Zhi, MA Xinying, ZHANG Bo, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2): 1–35. doi: 10.12676/j.cc.2019.02.001
    [30] ZHANG Senjie, JIN Shi, WEN Chaokai, et al. Improving expectation propagation with lattice reduction for massive MIMO detection[J]. China Communications, 2018, 15(12): 49–54. doi: 10.12676/j.cc.2018.12.003
    [31] AKYILDIZ I F and JORNET J M. Realizing ultra-massive MIMO (1024×1024) communication in the (0.06–10) terahertz band[J]. Nano Communication Networks, 2016, 8: 46–54. doi: 10.1016/j.nancom.2016.02.001
    [32] ZHANG Chuan, UENG Y L, STUDER C, et al. Artificial intelligence for 5G and beyond 5G: Implementations, algorithms, and optimizations[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(2): 149–163. doi: 10.1109/JETCAS.2020.3000103
    [33] WANG Hong, LIU Chen, SHI Zheng, et al. On power minimization for IRS-aided downlink NOMA systems[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1808–1811. doi: 10.1109/LWC.2020.2999097
    [34] XIE Ziwen, LIU Junyu, SHENG Min, et al. Exploiting aerial computing for air-to-ground coverage enhancement[J]. IEEE Wireless Communications.
    [35] JIANG Xu, SHENG Min, ZHAO Nan, et al. Green UAV communications for 6G: A survey[J]. Chinese Journal of Aeronautics, 2021. doi: 10.1016/j.cja.2021.04.025.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  7038
  • HTML全文浏览量:  3149
  • PDF下载量:  1814
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-06
  • 修回日期:  2021-10-22
  • 网络出版日期:  2021-11-04
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回