Compact Power Divider with Ultra-wide Stopband for Harmonic Suppression Based on Resonator Slow-wave Transmission Line
-
摘要: 该文提出一种基于谐振器慢波传输线的小型化宽阻带谐波抑制功分器,该谐振器慢波传输线由矩形谐振器、T型谐振器和蛇形线构成,来取代功分器中的1/4波长传统微带传输线。所设计制作的功分器,其尺寸仅为传统微带功分器的37.4%。实验结果表明,该功分器回波损耗大于10 dB的带宽范围为0.1~1.19 GHz,在2.2~11.05 GHz频率范围内衰减大于20 dB,具有较宽的阻带从而具有抑制谐波效果。仿真和测试结果较为吻合,验证了所提设计方法的有效性。Abstract: A compact power divider with ultra-wide stopband for harmonic suppression based on resonator slow-wave transmission lines is proposed in this paper. The resonator slow-wave transmission line is consisted of rectangular resonators, a T-type resonator and serpentine lines, and it is used to replace the conventional quarter wavelength transmission line of the power divider. The proposed power divider is only 37.4% size of the conventional microstrip power divider. The experimental results show that the bandwidth of return loss greater than 10 dB is 0.1 GHz~1.19 GHz. In the range from 2.2 GHz to 11.05 GHz, the attenuation is more than 20 dB, so the power divider has an ultra-wide stopband with harmonic suppression performance. The simulations agree well with the measured results, verifiy the feasibility of the proposed design method.
-
Key words:
- Power divider /
- Resonator /
- Slow-wave transmission line /
- Harmonics suppression /
- Miniaturization
-
表 1 最终优化得到的谐振器慢波传输线尺寸(mm)
参数 尺寸 参数 尺寸 参数 尺寸 参数 尺寸 wb 0.2 wh 0.2 la 0.6 le 3.2 wc 3.0 wi 0.8 lc 11.6 lf 1.2 we 0.4 wj 0.2 ld 2.4 lg 5.9 wg 0.2 wk 4.2 s1 0.2 s2 0.2 表 2 谐振器慢波传输线等效电路元件值
元件 参数值(nH) 元件 参数值(pF) 元件 参数值(pF) Ls1 3.06 Cs1 0.34 Cr2 1.53 Ls2 3.73 Cs2 0.09 Cp1 0.35 Ls3 4.17 Cs3 0.09 Cp2 1.64 Lr1 1.94 Cs4 0.16 Ch 0.08 Lr2 1.35 Cr1 0.34 表 3 与几款小型化谐波抑制功分器的性能对比
文献 中心频率f0 (GHz) 尺寸 –10 dB
带宽(%)中心频点处 20 dB谐波
抑制范围|S11|(dB) |S21|, |S31|(dB) |S32|(dB) [12] 1.95 0.12 λg×0.10 λg 71.0 –18.0 –3.10, –3.10 –35.0 2.5f0~5.3f0 [13] 1.30 0.15 λg×0.20 λg 69.2 –15.0 –3.47, –3.47 –12.0 1.3f0~5.0f0 [14] 1.80 0.12 λg×0.14 λg 70.6 –20.4 –3.01, –3.01 –34.6 1.7f0~6.0f0 [15] 1.55 0.12 λg×0.10 λg 87.5 –24.0 –3.02, –3.02 –27.0 2.1f0~6.7f0 本文 0.90 0.12 λg×0.11 λg 121.1 –46.7 –3.26, –3.24 –35.3 2.4f0~12.3f0 -
[1] LIN Y S and LAN K S. Spiral-coupled-line-based Wilkinson power divider[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(3): 241–244. doi: 10.1109/LMWC.2021.3051857 [2] LI Min, JIANG Lijun, and YEUNG K L. A novel wideband decoupling network for two antennas based on the Wilkinson power divider[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5082–5094. doi: 10.1109/TAP.2020.2981679 [3] FORTE G G S, FONTGALLAND G, and SILVA H S. Polarization detection of electromagnetic waves using cascaded Wilkinson power dividers[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(8): 833–835. doi: 10.1109/LMWC.2020.3005285 [4] HAN Changxuan, TANG Deshan, DENG Zhixian, et al. Filtering power divider with ultrawide stopband and wideband low radiation loss using substrate integrated defected ground structure[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(2): 113–116. doi: 10.1109/LMWC.2020.3036419 [5] LIU Fuxing, WANG Yang, ZHANG Xiaoyu, et al. A size-reduced tri-band Gysel power divider with ultra-wideband harmonics suppression performance[J]. IEEE Access, 2018, 6: 34198–34205. doi: 10.1109/ACCESS.2018.2846296 [6] SONG Kaijun, HU Shunyong, ZHANG Fan, et al. Compact dual-band filtering-response power divider with high in-band frequency selectivity[J]. Microelectronics Journal, 2017, 69: 73–76. doi: 10.1016/j.mejo.2016.03.002 [7] KARIMI-KHORRAMI S and MOLOUDIAN G. Design and fabrication of a microstrip lowpass filter with wide tuning range as harmonic suppression with application in Wilkinson power divider[J]. Analog Integrated Circuits and Signal Processing, 2021, 107(1): 155–163. doi: 10.1007/s10470-020-01752-4 [8] ROSHANI S and ROSHANI S. Design of a compact LPF and a miniaturized Wilkinson power divider using aperiodic stubs with harmonic suppression for wireless applications[J]. Wireless Networks, 2020, 26(2): 1493–1501. doi: 10.1007/s11276-019-02214-0 [9] HAYATI M and ZARGHAMI S. Analysis of asymmetric coupling lines and design of a Wilkinson power divider based on harmonic suppression network[J]. AEU-International Journal of Electronics and Communications, 2020, 115: 153047. doi: 10.1016/j.aeue.2019.153047 [10] QU Meijun, LI Mingxing, YAO Lidan, et al. A novel compact wideband power divider with ultra-wideband harmonic suppression[J]. Plasmonics, 2018, 13(5): 1681–1686. doi: 10.1007/s11468-017-0677-z [11] HUANG Wen, LI Jia, LI Ping, et al. Compact microwave components with harmonic suppression based on artificial transmission lines[J] International Journal of Antennas and Propagation, 2019, 2019: 4923964. [12] POURYAVAR R, SHAMA F, and IMANI M A. A miniaturized microstrip Wilkinson power divider with harmonics suppression using radial/rectangular-shaped resonators[J]. Electromagnetics, 2018, 38(2): 113–122. doi: 10.1080/02726343.2018.1436743 [13] SEN S and MOYRA T. Compact microstrip low-pass filtering power divider with wide harmonic suppression[J]. IET Microwaves, Antennas & Propagation, 2019, 13(12): 2026–2031. doi: 10.1049/iet-map.2019.0222 [14] MOLOUDIAN G, ROSTAMI S R M, and BJÖRNINEN T. Modified Wilkinson power divider with harmonics suppression and compact size for GSM applications[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(7): e22209. doi: 10.1002/mmce.22209 [15] TABATABAEE A H, SHAMA F, SATTARI M A, et al. A miniaturized Wilkinson power divider with 12th harmonics suppression[J]. Journal of Electromagnetic Waves and Applications, 2021, 35(3): 371–388. doi: 10.1080/09205071.2020.1839570